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Abstract

Mass audio surveillance, conducted by state or corporate entities, is one of the most sig-

nificant threats to personal privacy in the digital age. This thesis seeks to reconcile the

technology of the practice with theory in order to form a holistic picture of mass audio

surveillance for future discussion and action. First, theories of machine listening are devel-

oped through an artistic lens using different abstractions of human listening and frameworks

from perceptual biology. These provide a context within which a theory of mass audio

surveillance is situated. These findings serve as the conceptual backbone for the Acoustic

Counterfeit Machine, a system designed to "hide" sounds from methods of mass audio

surveillance through acoustic masking, altering the sounds’ semantic content while maintain-

ing their semantic context. The system is explored in technical detail and evaluated to show

its effectiveness; it is then demonstrated and postulated as part of a future art installation

design. The installation seeks to communicate the combination of theory and technology

central to this thesis, placing my work within a broader political context. A hyper-focus on

the technology of mass audio surveillance can lead to a rebuttal built on flawed foundations,

while overemphasis on theory can lead to a conception at odds with reality. As this thesis

seeks to demonstrate, it is through a unification of the two that an effective response to mass

audio surveillance can begin to be built.
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1
Introduction

In contemporary life, personal surveillance is ubiquitous. External monitoring of individuals

can take many different forms, most commonly perpetrated by state or corporate actors.

These two systems may seem far from equivalent, but with advances in technology and a

paralleled increase in access through the internet, both of these forms have developed a

similar structure: one of mass automated surveillance. For the purpose of this thesis, mass

surveillance refers to as any close observation or monitoring of sections or totalities of

society that happens on a scale that necessitates automation.

Of the stated forms of mass surveillance, none seem more surprising to the general public

than the state surveillance apparatus. With recent leaks from the NSA and CIA, the existence
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of the domestic surveillance apparatuses of global powers has become undeniably clear. The

reach of these programs has been shown to encompass all of society, essentially operating on

a principle of assumed suspicion, allowing the state to conduct close observation of anyone

at any time.

A number of papers, books, artistic endeavors, and other projects have been created to

point out and explore the nature of video surveillance. With the advent of modern CCTV in

the 1970s and their widespread adoption through the ’80s and early ’90s, the rise of video

surveillance has been an easily observable phenomenon. In contrast, audio surveillance has

a less visible history. Relatively little has been done academically or artistically regarding

audio surveillance.

It is easy to point out all of the cameras around you at any given point. Right now I am

visible to my phone, my computer, and two security cameras placed on the ceiling of the

library. It is comparatively much more difficult to isolate sources of audio surveillance. This

is for one obvious but important distinction: microphones don’t rely on line-of-sight. While

the four aforementioned devices could be listening, so too could the computers and phones

of everyone within fifty feet of me. The rise of audio surveillance is difficult for the average

person to passively notice partly because of how invisible it is.

When asked how to combat video surveillance, the simplest answer is of course to hide.

A video camera, while an imposing presence, loses its potency the moment you close a door

or step behind a wall. This is not the case when it comes to audio surveillance. Microphones

are designed to take advantage of the distributive quality of sound, which is an acoustic

property that is difficult to subvert.

The goal of this project is two-fold. First, I will discuss audio surveillance as a means

of machine listening, exploring its place in society and the implications of its presence by

creating a description of the phenomenon through an artistic lens. Then I will present—both

technically and in an artistic context—a prototype system for "hiding" from audio surveil-

lance using acoustic masking, walking through its design, construction, and effectiveness.
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2
Background

"Most people do not mind if a machine records all their words like an attentive

parent or friend and renders language concretely infinite and searchable. What

people mind is being hurt or being killed, or being made to feel ugly, or being

made poor and then being punished for it." - Hannah Black, Social Life [20]
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2.1 A Tool of Oppression

The first commonly understood example of mass surveillance in the United States occurred

during World War II, when the FBI and Military Intelligence surveilled the written and

telephone communications of some 10 million German-Americans [73]. Immediately

following in the 1950’s, suspected communists were placed under state surveillance during

the era known as "McCarthyism" [4]. During the Vietnam War and the Civil Rights

Movement, the NSA, CIA, and FBI regularly monitored the communication of journalists

[103], civil rights leaders [18], and congresspeople [14]. The Gulf Wars brought about

widespread domestic phone surveillance [98], which ultimately paled in comparison to the

domestic surveillance undertaken after September 11th, 2001 and the passing of the Patriot

Act. In addition to removing court protections for surveillance (meager as they were) [65],

telecommunications companies were directly aiding the state surveillance effort [12]. This

was also the first time the public became aware that the data from these wiretaps, which

were previously thought to have been used only in transience, were being stored for years

after their capture.

In 2011, a WikiLeaks dossier pointed to an even greater expansion of the modern

surveillance apparatus, revealing the "multi-billion dollar industry" that existed exclusively

to support state surveillance [74]. The Edward Snowden NSA leaks in 2013 brought the

PRISM program to light, which was started in 2007 with the express purpose of intercepting

and storing internet communications and had been operating under broad warrantless

directives aimed at US citizens [15, 47]. This program extracted raw data, including audio,

directly from "the central servers of nine leading U.S. Internet companies" [40].

There’s a through line one can attempt to draw about the history of surveillance in

the United States as being a progression from primarily targeted to primarily generalized.

Certainly, as the technology has allowed for broader surveillance, the state has used it for

such. What was once (pre-1940’s) a practice focused on the individual is now a practice

applied to the broad public. This is first and foremost due to the advances in technologies
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available to the state. The monitoring of German-American citizens during WWI involved

immense efforts, "requiring legions of postal workers to physically examine some 30 million

first-class letters and 350,000 badge-carrying vigilantes to perform shoe-leather snooping

on immigrants, unions, and socialists of every sort" [73]. Any reassurance gained from

considering the manpower cost of surveillance is dashed in the digital age. The collection of

data had started to be automated as soon as data storage technologies were created, starting

with innovations in magnetic tape made in the 1930s.

The biggest changes coming into the 2000s were an exponential increase in storage

capabilities and an automation of the analysis of the data. A warehouse of tapes in the ’70s

would fit in a small room in the ’90s and on a single portable hard drive now. Any previous

need to be diligent and considerate about what data was being collected and what data was

being stored left the discussion twenty years ago. If being selective wasn’t necessary, why

wouldn’t the NSA record every communication sent by every person? As made public in

the Snowden leaks, that is exactly what the government has done at an increasing rate and

depth.

By focusing on the expanding reach of surveillance, however, one can lose sight of a

more essential common thread, which is that surveillance is used as a tool by those with

power against those without. In every instance of contemporary mass surveillance this

has been the case. This fact was easier to ignore for a general populace when it was just

the German-Americans or the outspoken Civil Rights leaders who were under watch. As

surveillance has grown to encompass the entirety of the population, it is forcing that entirety

to come to terms with the realization that they are all in fact vulnerable under the current

state and capitalist structures.

This is not to say that some are not still more targeted than others: black and brown

people, individuals of lower socio-economic class, and the politically outspoken are all still

targeted by surveillance at a greater concentration. As is often the case, the best example

of how the state treats the less privileged and vulnerable can be found in its abuse of
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incarcerated individuals. On January 30, 2019, George Joseph and Debbie Nathan published

an article in the Intercept uncovering the widespread use of voice print technology in U.S.

prisons [58]. Multiple states have systems in place that record and store all conversations

held over prison phones. That data is then used to create individual voice prints of both

prisoners and anyone calling in to talk to prisoners. In brief, voice print technology uses

machine learning to build statistical models of an individual’s vocal properties, allowing

a machine to identify someone (with varying accuracy) from the sound of their voice.

The recordings used to create these models are often obtained either without consent or

under threat of punishment. The prints are then used to track both incarcerated and non-

incarcerated individuals, mapping relationships between current and former prisoners, as

well as family members, case workers, and anyone else who happens to be caught in the

technology’s wide net. All of the technology behind this dystopian practice is privatized and

operated by such companies as Securus Technologies and Global Tel Link, which offer no

transparency as to the security or specifics of their practices.

While it doesn’t fit into the exact same mold as state surveillance, corporate surveillance

serves a complementary goal. In the past five years, the commercial push for "always-

on" listening devices, such as Amazon Echo and Google Home, has vastly reduced the

possibility for surveillance free spaces. Conservative estimations put these "smart speakers"

in 16% of American households in January of 2018 [80], with that number ballooning to

20% just three months later [81]. Another report by the same journalist take from RBC

Capital Markets stated in December of 2018 that "41% of U.S. consumers now [own] a voice

activated speaker" [82]. While this number could be exaggerated, Nielson gave an estimate

in late 2018 of "24 percent of US households owning a smart speaker" [90], which is still a

staggering statistic. The recordings made from these speakers, which were only thought to

be heard by algorithms, are reviewed by human employees at Amazon, Google, and Apple,

as shown in an April 2019 report by Bloomberg [36]. Even if one believes wholeheartedly

in the benevolence of megacorporations it is impossible to have confidence in the security
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of such devices to protect against government or private infiltration. In mid-2018 there was

a alleged "bug" reported by researchers that allowed for continuous speech transcription

without user’s knowledge or consent using an Amazon Echo [62], and an almost identical

report was made for the Google Home Mini six months earlier [24]. It can’t be overstated

how large the contributions of these corporations are to the legitimization of the surveillance

state. The fastest way to ensure the collapse of any mass resistance to surveillance is to

normalize surveillance itself as a helpful technology, thus transforming it from a human

rights violation to an accepted necessary evil.

Mass surveillance additionally operates as a ruthless tool of expansive capitalism. In

2015, artist and writer Hannah Black published "Social Life" in Texte Zur Kunst [20],

where she explored the relationship of social media to surveillance, capitalism, and human

connection. In social media systems, user’s information, including both demographics and

their posts themselves, are used by corporations as the basis for revenue streams. Black

writes, "Like the capitalist dream of robot workers, the direct conversion of life into value

is a fantasy about the full negation of labor." Under social media, all activity is valued,

and therefore a form of labor; similarly, under a system of mass surveillance, speaking is

labor, and speech has value. The "capitalist dream" Black refers to creates a contradiction,

though one that is in line with capitalism, where all speaking is labor and yet no one are

conscious laborers, allowing surveillance systems to create capitol with no consideration or

recompense as to its source. Speaking of "the black womanists", Black writes, "surely black

women have felt the pain of being valuable often enough." The transference of existence to

value is at the core of oppression, and is facilitated through forms of continual surveillance.

State and corporate mass surveillance is a monumental structure that shows no sign

of slowing down. State practices face little opposition from either party, and regulatory

agencies are either not equipped or not interested in curtailing corporate abuses. Surveillance

is a part of everyday life in the United States—alongside most of the world—and a lack of

political opposition to its presence can make resistance seem impossible. And this is, of
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course, a necessary goal of oppression: to make the oppressed feel that their circumstances

are the inevitable result of some grand architecture and are too great to overcome.

This thesis is not a road map towards organized political resistance; it seeks to elucidate

the practices of mass audio surveillance. By naming, defining, and exploring the compo-

nents of such practices, forms of personally, socially, and politically effective resistance to

surveillance can be constructed.

2.2 Listening and the Acousmatic

Audio surveillance at a mass scale necessitates the use of machine listening, a term which

encompasses any machine that uses a microphone to "hear" sound. While this can include

very basic functionality, in the context of modern mass audio surveillance it refers to

computers that run complex algorithms to analyze sound and make decisions based on the

results. The concept of machine listening is central to an understanding of mass audio

surveillance, both from an ontological and a technical perspective. I will be approaching the

topic from two angles, the conceptual and the practical, with the ultimate goal of connecting

them into a unified description of machine listening in a surveillance context.

Machine brains listening with machine ears operate on a fundamentally different frame-

work than a human model of perception. There are, however, significant similarities between

machine listening and Pierre Schaeffer’s concept of reduced listening [85]. I recruit re-

duced listening and the acousmatic experience as a jumping-off point in describing machine

listening.

Schaeffer’s concept of the acousmatic came from his explorations of musique concrète.

This was a musical practice pioneered by Schaeffer that used spliced audio recordings and

synthesized sound to create sonic elements of unknowable origin. He and his colleagues

at Studio d’Essai, in Paris, would make recordings of any sound, from rivers to trains to

conversations, and physically cut the tape into small segments. These segments would then
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be used in isolation or spliced together to create new composites [79]. The segmentation

was done at a small enough scale to make it virtually impossible to decipher the origin of the

component sources. Without any discernible point of departure, sounds could hypothetically

exist without historical or personal context. These sounds were called acousmatic, a term

which came to mean any sound disambiguated from a direct source. Schaeffer considered

acousmatic music to possess immense artistic possibility, allowing listeners to focus on the

sound itself rather than its place in the world.

In musique concrète, "The emphasis was placed on listening; the ear would have to train

itself to hear these new musical values unique to the sonic materials deployed" [59, p. 17].

This new kind of listening was categorized as "reduced listening", one of four modes of

listening Schaeffer outlines in Traité des objets musicaux: essai interdiscipline. Reduced

listening is characterized as listening to sounds’ morphological attributes without care to

source, cause, or spatial location.

While Pierre Schaeffer coined the term in musical vernacular, discussion of reduced

listening and the acousmatic has continued in various forms. Denis Smalley has argued for

an expansion of the listening practice in electronic and electroacoustic music [92], as well as

a return to and emphasis on spatial identification within acousmatic sound [94]. The many

effects of the switch to recordings as a primary mode of listening (and acousmatic sound

as the primary mode of hearing music) have been explored by John Young [107] and Eric

Clarke [30], among many others. The relationship between the acousmatic and the physical

has been explored by Simon Emmerson [43]. A recent book by Brian Kane titled "Sound

Unseen: acousmatic sound in theory and practice" [59] has thrown the very foundation for

acousmatic sound into question. Here Kane argues that the specific framing of Pythagorean

origin in which Schaeffer defines acousmatic sound is historically inaccurate, and that a

broader context for acousmatic sound and reduced listening exists in numerous forms.

For a machine, a being seemingly without external bias, it may appear quite clear that

all sound is acousmatic, and all listening reduced. This is true to greater and lesser extents.
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With Schaeffer’s modes of listening as existing in different interpretive contexts, the question

of machine listening ultimately comes to who can access which contexts. All of these works

of theory rely on the human listener as one of their foundational elements, and thus they all

make certain assumptions about access to contexts that do not necessarily hold true when

applied to machines.

In December of 2018, Technosphere Magazine released a dossier focused on the phe-

nomenon of machine listening and its numerous consequences for art and human aural-

ity [69]. The nine works that compose the dossier each take a different approach to machine

listening. Florian Hecker explicitly explored the difference between human and machine

audition in his piece 1935, emphasizing the heightened ability of machines to hear certain

aspects of sound and music [53]. In her piece Calm can only make it false (Noise Floor),

Yoneda Lemma marks the key difference between machine and human listening as one of

abstraction [63], which is the ability to perceive from multiple perspectives, whether cultural

or structural or temporal. This is not dissimilar from the concept of context discussed

above, where the ability to attune oneself to different contextual spaces marks an essential

difference between human and machine listeners. The guest curator of the dossier, Stefan

Maier, combines a theory of machine listening with one of machine learning, examining

Google’s WaveNet project as an example of the results when these two technologies are

combined [70].

In my exploration of machine listening I will be piecing together multiple theories, using

Brian Kane’s "Sound Unseen" as a starting point for Schaeffer’s ideas and their rebuttals,

to create a definition of machine listening that is acousumatic-adjacent, but not altogether

parallel.
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Figure 2.1: Claude Shannon’s model of all communication systems (source: https:
//commons.wikimedia.org/wiki/File:Shannon_communication_system.
svg

2.3 Claude Shannon and the Structure of Communication

Machine listening as a theory cannot exist isolated from considerations of its more technical

elements. Machine listening is a subset of explorations that falls under the overarching

description of machine perception. Machine perception (and, consequently, listening) as a

practice is built on the foundations of information theory. This field seeks to describe the

flow of information in a generalized sense mathematically.

The creator of information theory was Claude Shannon. In 1948, at the age of 32,

he published "A Mathematical Theory of Communication", a two-part article that both

raised and answered almost every question about the definitions and limits of information

communication [88]. While applied to the problem of signal processing, the theory is

easily extrapolated to other domains. The points raised in these articles—later appropriately

published under the name "The Mathematical Theory of Communication"—are numerous

and all consequential. To understand why surveillance and machine perception operate as

they do I will briefly describe the core elements of Shannon’s theory.

Shannon outlines six elements in any communication, laid out in Figure 2.1. First is

the Information Source, where the message is conceived. The message is then encoded

and sent by means of a Transmitter. The message travels across a Channel where it is
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affected by a Noise Source. The second half of the diagram is the mirror of the first, with the

message being decoded by the Receiver and finally handed to the Destination. An important

concept to understand is that the starting message is not the received message. Though the

transmission and reception are exactly inverse functions, the addition of a source of noise

alters the signal in transit, changing it by some non-zero amount.

In the context of mass audio surveillance, the diagram can be interpreted as follows. The

Information Source is the source of the sound being observed, such as an individual who is

speaking aloud. The Message is whatever content is trying to be conveyed; it is the core

meaning of the communication, and is not necessarily the same as the speech itself. The

Transmitter is the speech itself, meant to convey the message from one party to another. The

Signal is the physical vibrations in the air that describe the sound being observed. The Noise

Source can be many things: other sounds in the space, sound dampening material, sound

reflecting material, and anything else that affects the acoustic vibrations in the physical

domain. The modified signal then reaches the Receiver, which is in this case a microphone.

That receiver then goes through a nested communication system with the signal being sent

to and processed by a machine. The final Message is interpreted by the machine and, if

deemed appropriate, sent to a final Destination of a human listener.

This diagram fundamentally describes any and all forms of communication. Drawing

from this structure, Shannon outlines three "problems" of communication that, taken together,

describe the "success" of any communication. They are as follows:

Level A: How accurately can the symbols of communication be transmitted?

(the Technical problem)

Level B: How precisely do the transmitted symbols convey the desired mean-

ing? (the Semantic problem)

Level C: How effectively does the received meaning affect conduct in the

desired way? (the Effectiveness problem)
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The goal of hiding sound from audio surveillance algorithms is ultimately to disrupt

conduct in the receiver. However, that doesn’t necessarily imply that the best point of

aggravation would be at Level C, the effectiveness problem. While the effectiveness problem

is closest to the receiver, that also makes it much more difficult to use as the location for any

intervention.

There have certainly been examples of anti-surveillance work done within different levels,

but those tend to be fall under significant projects undertaken by state or corporate entities.

Anti-surveillance technologies created by individuals or small groups usually operate at a

point prior to even level A. For example, anti-face-recognition prosthetic masks [11] and

makeup [50] seek to alter the Signal itself, essentially operating as an intentional Noise

Source. It is at this point that the power most clearly rests within an individual’s grasp, and

it is here that the system I design seeks to hold its intervention.

2.4 Anti-Surveillance Practices

Technologically-mediated audio surveillance has existed since the creation of the first

commercial telegraphs in 1844 [13]. Resistance to surveillance practices rose immediately

and remained through the 20th century, but it has always represented a minority of the

public, and has a noted absence among those in power. People’s responses to the problem

of surveillance have taken many forms throughout history. I will briefly describe recent

examples of artistic and technological anti-surveillance works to situate within them my

anti-surveillance system, which exists both as a demonstrative technology and a reflective

art installation.

A significant amount of artistic work has been done in the area of sousveillance. First

used by researcher Steve Mann, sousveillance is defined as observing the observer. As seen

in Figure 2.2, sousveillance often represents the individual recording a situation in which

they are participating; this is essentially a reversal of the surveillance organization. There
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Figure 2.2: The concept of sousveillance, as drawn by Steve Mann’s six-year-old
daughter. (source: https://upload.wikimedia.org/wikipedia/commons/7/
7f/SurSousVeillanceByStephanieMannAge6.png

are many kinds of sousveillance, which vary in their purpose and the relationship between

the surveyor and the subject. Sousveillance has been used in a variety of contexts, and is

one of the most common forms of direct critique on surveillance.

Perhaps the earliest notable work using sousveillance is Andy Warhols’ Outer and

Inner Space [102], released in 1966. This film shows Edie Sedgwick answering interview

questions while a pre-recorded tape of her answering the questions plays on a monitor next

to her. The two faces are turned towards each other from the camera’s perspective. What

results is the illusion of Sedgwick observing her own observation. While this film has only

been screened on rare occasions, it is an early example of a critique on modern surveillance

through the lense of sousveillance.

In 2001 Steve Mann created HeartCam [71]. This device was a bra with two "surveillance

domes" as the cups. The domes would take photographs at a speed corresponding to the

wearer’s heart rate. When someone assailed the wearer their heart rate would involuntarily

increase and more photos would be taken of the assailant. This was sousveillance on an

individual level, meant to invert the male gaze.

In 2014, ten artists working with photography created pieces approaching surveillance

from a variety of directions as part of Watching You, Watching Me, a collection published

as number 22 in the series Moving Wall from the Open Society Foundations Documentary
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Photography Project [5]. This has been one of the largest public exhibitions of surveillance

art, and a number of the works included take a sousveillance approach. It’s Nothing Personal,

by Mari Bastashevski, explored the economic world of surveillance. She used materials from

"international electronic surveillance companies" and installed them around photographs

of corporate security enterprises [16]. Qaddafi Intelligence Room, a series by Edu Bayer,

depicts a number of rooms used by Muammar al-Qaddafi’s intellignce agents, "where they

spied on emails and chat messages with the help of technology Libya acquired from the

West" [17]. Both of these are examples of broader sousveillance, documenting surveillance

practices by looking at where they happen.

Sousveillance can be an incredibly effective technique in certain respects. Recording

the "watching" itself allows for a level of direct accountability. Recording is evidence,

and when addressing abuses by state surveillance powers it’s necessary to have as much

and as irrefutable evidence as possible. If the objective is to observe such abuses, then

sousveillance is a logical path to go down. If the end goal cannot be achieved through

observation, however, sousveillance as a methodology falls short.

Also part of Watching You, Watching Me is a series titled Thousand Little Brothers, by

Hasan Elahi [41]. Elahi was erroneously tied to terrorists by the FBI, and was put under an

extended investigation. In response, he photographed thousands of "mundane details from

his daily life" and mailed them to the the FBI on a weekly basis. This piece offers a form

of direct confrontation with the surveillance state; its combative and actionable methods

provide a useful framework for an artistic practice grounded in the reality and physicality of

surveillance.

A common approach for surveillance art is addressing physical location and GPS

data. In terms of the many realities of a surveillance state, location tracking is quite

commonly practiced and relatively simple to implement and understand, which makes it

easy to duplicate for the artist or layman. At the same time, location tracking elicits strong

responses. People view their locations as sacred information, though, like most surveillance
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technology, location tracking has been normalized by framing it as a helpful feature. By this

point most phones are passively tracking location at all times [100, 106].

Mont-réel, created in 2015 by Eva Clouard, displays the artist’s location on a gallery

display in realtime [31]. Visitors could watch as Eva traveled across the city, gaining insight

into how a relatively small piece of information can imply significant personal connections,

such as where she lives, where she works, and where her friends are. This practice of

personal exploitation is frequent in surveillance art. Because of its intrusive and violent

nature, it is certainly safer for an artist to mimic such practices on themselves instead of

others.

As with any scientific or technical subject, some of surveillance art chooses to focus on

the technology itself, perhaps to the detriment of the human consideration. In 2017, Hansel

and Gretel opened at the Park Avenue Armory in New York City [104]. A collaboration

between Chinese activist Ai Weiwei and Swiss architects Jacques Herzog and Pierre de

Meuron. The installation was in two parts. The first involved a camera-based setup that

tracks the position of participators. Their previous positions are projected onto the floor,

creating a ghost-like fading image of their movement over time. The second part used facial

recognition software to give the participant a picture of themselves taken from the first

room. This installation gives the audience an impression of how advanced the technology for

surveillance is, but does nothing to question its use. The technology itself is the centerpiece,

and the result is that surveillance "is mostly reduced from threat to mildly educational

fun" [95].

While a technical focus has the potential to harm an artistic project by emphasizing the

technology over the meaning and purpose of its use and impact, much valuable work has been

done within a solely technical domain centered around the creation of anti-surveillance tools.

A presently common example is the rise in usage of messaging apps with default end-to-end

encryption, such as Signal [8] and WhatsApp [25]. These use algorithms that ensure a much

safer path for a message to travel along to prevent snooping. Secure web-browsing can be
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attained through the use of Tor [57, 105] for anonymity and Ghostery [2] to prevent tracking

services to access your information. Mobile anti-surveillance tools are just as plentiful. such

as the Android IMSI-Catcher Detector (AIMSICD) [28], an open-source android application

that notifies users if their phone connects to a false mobile tower (a device used by local,

state, and federal law enforcement to intercept cellular communication [9]).

Physical tools are another subset of anti-surveillance technology. The anti-face-recognition

prosthetic masks [11] and makeup [50] mentioned previously are examples of personal-use

physical technologies. Clothing has been the medium of choice for many anti-surveillance

designers, with such examples as the Jammer Coat [1] and the Anti-Surveillance Coat [86].

NSA whistle blower Edward Snowden designed an iPhone case that displays otherwise

hidden information about whether your phone may be transmitting data that’s unsecured [72].

For technology to be effective, access and education are essential. Matt Mitchell founded

Crypto Harlem, an organization that seeks to educate individuals in Harlem about anti-

surveillance technologies [34]. A simple fact that is often ignored by technologists and

entrepreneurs is that mass surveillance is not a equally-applied force. As stated previously,

it is a system of structured oppression, and as such it disproportionally targets the poor,

communities of minorities, and individuals of color. While this is a topic too immense to

cover in this text, Jason Nance’s 2016 article "Student surveillance, racial inequalities, and

implicit racial bias" [75] provides a thorough study of surveillance as a racialized system.

Additionally, Arun Kundnani’s and Deepa Kumar’s 2015 article "Race, surveillance, and

empire" [60] delves deeply into the social history of surveillance, providing a broader

context for today’s surveillance state.

With all of these works of art and functional tools, there is a glaring historical lack of

consideration for the acoustic. Anti-surveillance has a rich history, but also a clear bias

towards the visual. Audio surveillance has existed long before video, but when video surveil-

lance was created, most surveillance commentary switched focus to the more "advanced"

technique. Even in other non-visual modes of surveillance, such as location tracking, works
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critiquing them are generally presented within a strictly visual context. Despite audio

surveillance technology and usage making giant leaps in the past thirty years, there has been

very little work done in that time with a purely auditory focus. Ultimately, the installation

design presented in this thesis was created to accentuate the technological capabilities of

mass audio surveillance and simultaneously present a world in which such surveillance is

not inevitable, but is a force that can and should be resisted.
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3
Machine Ears

"Listening puts us in the world" - Stephen Handel, Listening: An Introduction

to the Perception of Auditory Events [49]

In order to adequately approach the topic of mass audio surveillance, it is first necessary

to explore the foundation on which it rests: machine listening. In an effort to place mass

audio surveillance within a broader context, this chapter seeks to build models that describe

machine listening in its different forms, walking through their definitions and implications.

First, a brief overview of models of human listening will be given, and their relationships to

machine listening will be questioned. Using the form of these human models, three different
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axes of machine listening will then be presented, followed finally by a reduction of those

theories to the practice of mass audio surveillance.

3.1 Human Listening

In 1967, Pierre Schaeffer outlined four modes of listening that one can experience. They

are: ouïr, comprendre, écouter, and entendre. These modes provided the foundation for

acousmatic theory, and are fundamental to the Schaefferian model of auditory perception.

Ouïr is the most basic biological listening mode. It is pure perception, but only obtained

in an unconscious, inattentive way. While the other modes require some level of focus, "Ouïr

provides that which is passively ‘given to me in perception’" [59, p. 27]. Comprende is

listening to sound in reference to a system of signs and symbols. For example, speech falls

under comprende because the sound is heard as a particular reference to external symbols,

that of a language. Écouter is concerned with the identification of sound relative to its

environment. A listener tuned into écouter would be using sonic and spacial properties

to classify a sound as coming from a specific source and cause: "It is an information-

gathering mode" [59, p. 27]. Lastly, entendre separates sounds from those properties that

relate to source, cause, and space. Entendre centers around "a sound’s morphological

attributes" [59, p. 28], and serves as the primary basis for Schaeffer’s reduced listening.

While these four modes are presented as distinct, in practice they almost always happen

in concert. To attempt to listen to speech while ignoring the tacit understanding that it

comes from a human would be impossible. Likewise, listening exclusively to morphological

attributes is beyond the realistic capabilities of most people, with notable exceptions in

cases of abnormal attention, such as dyslexia [26, 42]. However, attuning oneself more to a

certain mode over another is possible, and is what Schaeffer desired to invoke with musique

concrète and the acousmatic experience.

Pierre Schaeffer’s modes of listening are the most established, but they are far from the
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only theory of listening. In 1993, Michel Chion published Audio-vision, and in it he proposed

a simplified version of Schaeffer’s modes of listening, reducing the possibilities to just three.

The first, causal listening, is "listening to a sound in order to gather information about its

cause (or source)" [29, p. 26]. This encompasses all possible techniques and methodologies

for determining a sound source, from unique identification, such as an individual speaker, to

generalized identification, such as saying "this sound is metallic". The second category is

that of semantic listening, which refers to any form of comprehension rooted in translation,

that of a language or code. The final category is reduced listening, a directed form derived

from Schaeffer’s entendre. "Reduced listening takes the sound... as itself the object to be

observed instead of as a vehicle for something else" [29, p. 29]. This is the description of

reduced listening most often understood and referenced, at least within English texts. Chion

goes on to explicate the requirements and benefits of a reduced listening practice, arguing

that it is both practical and useful for enhancing one’s understanding of sound.

There is also the problem of time, a notion which remains largely unaddressed in Scha-

effer’s and Chion’s modes of listening. While their modes are reasonable when taking a

"snapshot" of a listening experience, they are inconsistent with a temporal understanding

of sound. Denis Smalley’s spectromorphology is an attempt to reconcile this. Spectromor-

phology is a description of frequency content (the spectrum) over time. This innovation in

understanding allowed for descriptions of music theory that couldn’t be appropriately ana-

lyzed under more traditional methods. Some examples of spectromorphological diagrams

can be seen in Figure 3.1. Through visual metaphor, these diagrams directly show a sound’s

relationship to time. For example, in sub-figure 3, the composite shape on bottom represents

a sound that grows from a minimal place, contains some staggered transition, and ends with

a growth and sudden release. The power in combining such simple shapes to represent

complex sounds is elucidated when looking at more complicated examples, presented in

the numerous possibilities shown in sub-figure 6. Smalley says that spectromorphology

explicitly solves two problems introduced in reduced listening. First, practicing reduced
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listening makes reinterpreting sound with its external contexts more difficult. And secondly,

"microscopic perceptual scanning tends to highlight less pertinent, low-level, intrinsic detail

such that the composer-listener can easily focus too much on background at the expense of

foreground" [93, p. 5].

Figure 3.1: Four examples of spectromorphological sonic structural concepts.
Source: The Visual Sound-Shapes of Spectromorphology: an illustrative guide to
composition [21]

3.2 Axes of Machine Listening

While there exist different conceptions of machine listening as a technological or cultural

phenomenon, none satisfactorily address it through a more artistic lens. For Schaeffer,

Chion, and Smalley, their modes of human listening were developed in concert with their

desires as a composer. Their audiences are humans, and understanding how they hear is
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beneficial to them as music-makers, and can afford new compositional possibilities. In audio

surveillance, the machines are the listeners, and one could create and compose sound for

their ears. As environmental "extraneous" sound can be thought of as musical in certain

contexts or to certain listeners, so too can sounds such as speech be considered compositions

to ears designed to hear them as such. I think the field of machine listening could benefit

from a consideration of possible modes of machine listening, as has been explored for

human listeners.

Perhaps the modes of human listening explored above can find direct application onto

machine listening. Both Schaeffer and Smalley’s formulations of human listening rely on

two primary assumptions. The first is intentionality. Within these modes of listening lies the

ability to attune oneself to one over another, often called "attention" or "salience". Attending

to certain modes could be an unconscious act, but it could also be an act over which

one has conscious control. The second assumption is some degree of cultural knowledge

or understanding. This is most obvious with Chion’s semantic listening or Schaeffer’s

comprende, but it is certainly present in the other modes as well. Being able to place a sound

within an environment requires some biological or cultural understanding of the environment

and its sonic qualities. Likewise, identifying sound sources from their products requires

some prior knowledge of the relationships between certain sound sources and their sonic

products.

These two assumptions become potentially problematic when applied to machines.

Intentionality does not exist in the same way for a machine listener as it does for a human

one. Machines are able to effect action, but the parameters and biases of those choices to

act are determined exclusively by their human creators, rather than indirectly by biology

and culture. Broader understanding and context is a more difficult issue to parse, but it falls

under the same category as intentionality. Machines only have the contexts given to them by

their human creators.

Interestingly, this lack of context gives rise to another potential consequence. P. F.
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Strawson, in his book Individuals [96], posits a world that exists purely in the auditory

domain. Strawson states that with the destruction of all other senses comes the destruction of

space, and without other contextual information, it would be impossible to separate distance

from volume. For example, one couldn’t possibly know if a sound is far away or just quiet.

Brian Kane summarizes Strawson’s argument in Sound Unseen, stating with without space,

there can be only qualitative descriptions of sound, never quantitative, numerical ones. One

couldn’t say that two sounds "are the same", or come from the same source; one could only

say that two sounds "are alike". The result is that "A purely auditory world, surprisingly

enough, turns out to be a world where types or universals, rather than particulars, are

primary" [59, p. 145]. To a contextless machine, this would imply that broad classification

might be possible, but specific identification is unattainable.

While accepting Strawson’s theory as fact might make a reduction of machine listening

easier, his philosophy isn’t grounded in the reality of acoustics. As John Pierce states in

his chapter titled "Hearing in Time and Space" in Music, Cognition, and Computerized

Sound, "without visual clues we do sense the direction and even the distance of sound

sources" [32, p. 89]. The human auditory system is designed in such a way as to facilitate

spatial identification of sounds through a complex decoding of the difference in information

between our two ears. If a machine listening system has only a single microphone, this

collapse of space becomes more relevant, though even then it’s not a guarantee. This is not to

say that there aren’t instances where spatial identification is not possible, even with two ears.

In fact, there are a number of ways to trick the ear to hear sound as coming from a falsified

direction or distance. But these auditory illusions no more discount the spatialization of

aurality as MC Escher’s works disprove vision’s ability to discern depth. The fact that it’s

possible at all to perceive space from sound alone seems to discount Strawson’s theory and

Kane’s interpretation of it.

That being said, a slight adjustment of Strawson’s theory could pull it back to help

contextualize aspects of machine listening. Strawson takes an understanding of the world and
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splits it into two categories: qualitative description and quantitative description. As described

above, in humans and many machine listening systems, both of these methods are accessible.

While this is true for an understanding of sonic comparison, there is another category

of understanding that a purely auditory world cannot contain: extra-aural identification.

With only quantitative comparison, one can identify two sounds as coming from the same

source, but one cannot reasonably identify what that source is. The ability to assign external

non-sonic identity to a source requires additional senses for corroboration. This adjusted

approach to Strawson’s theory will help in an understanding of the possibilities and non-

possibilities of machine listening.

Another key component in placing machine listening outside of human listening is the

role of attention. In practice, human listeners are naturally attuned to certain listening modes

over others, but there exists within them the capacity to listen in any mode. And, with

training, one can shift the relative importance of the modes to prioritize one over the other,

as Schaeffer proposes with the reduced listening practice. This capacity is notably restrained

in machines. In any construction analogous to a Schaefferian model, a machine can be

designed to have access to only a single listening mode, or prioritize one mode over all

others. It is possible to design a machine listening system that listens at multiple hierarchies

simultaneously, and most state of the art listening systems do this to some extent. However,

the innate human ability to switch and alter listening modes can not be assumed to be present

in an all machine listeners.

"Listening" is a verb; in "machine listening", the machine commits an action. Actions

do not exist in isolation, but rather follow purpose and intention, whether conscious or

unconscious. Importantly, the actions are not the machine’s own, but are a result of human

construction. Schaeffer’s modes of listening can’t be directly used to understand machine

listening because they rely on a separation of the conscious intention from the unconscious

one, and likewise a separation of intention from passive experience. For a machine listener,

there is no unconscious, and there is no passive experience. Every act of machine listening is
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deliberate, even if its subject happens to be unintended. Chion’s modes more closely address

the intentionality of the machine listener, but they fail to accurately reflect the real-world

functions and intentions of a machine listener. Smalley’s spectromorphology holds potential

for understanding the technical workings of machine listening systems, but it again fails in

reflecting the context in which machine listening takes place.

An illustrative framework for understanding the rise and development of machine

listening can be found in J.J. Gibson’s theory of ecological optics. In brief, this theory posits

that "the environmental niche determines the structure of an animal and its sense" [46, p. 150].

Ecological optics ran counter to the general belief of animal vision at the time, and, though

certain aspects of it are no longer in fashion within the perceptual theory community, was

hugely influential in our understanding of perceptual systems. The development of vision

systems was in response to what Gibson called affordances. Affordances exist outside the

animal in its environment, and "the affordances of things are what they furnish, for good

or ill, that is, what they afford the observer" [46, p. 154]. The adaptations of perceptual

systems, then, was all about being attuned to affordances, as "organisms need to be attuned

to affordances before they can exert their power to shape actions" [46, p. 155].

Gibson’s theory provides ample reflection for machine perception. As "beings" who’s

every adaptation was created for an express purpose, the evolutionary science behind

ecological optics parallels the development of machine systems. And, just like for animals,

it is essential to any analysis of machine listening to consider the space in which machines

exist as well as their purpose for existing. "We must remember that understanding perception

requires the joint study of an organism and its environment" [46, p. 155].

By bringing into focus the human intent behind machine listening systems, we also align

ourselves with the original model of communication theory as dictated by Claude Shannon.

A basic assumption of all forms of communication, as laid out by Shannon in 1948 and

discussed more extensively in the Background, is that they carry a message for the purpose

of affecting conduct. This is the basis for Level C, the effectiveness problem, which again
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reads as follows: how effectively does the received meaning affect conduct in the desired

way? From ecological optics we’ve extracted that all forms of machine listening exist to

serve express purposes, and from Shannon we can realize that these purposes are always in

the form of affecting human action in some way.

An understanding of different common conceptions of human listening and a framework

for organizing the intentionality of machines and their creators prepare us to undergo an

examination of machine listening in a certain direction. However, we will find that limiting

ourselves to only this conception does not adequately cover the spectrum of potential

ontologies of machine listening. In the end, different structuring principles are used to create

models, and models are always reductions of the world. This is of course what makes them

useful, but reductions do not apply equally across all realistic scenarios. With theories of

the many different organizing principles discussed above, I present three different axes of

machine listening, each providing a new angle for examination. While none are more right

than the others, some might prove more useful for this thesis and the contextualization of

mass audio surveillance.

3.2.1 Technologically Determined

One possible structuring principle for differentiating categories of machine listening is the

technology necessary to execute different listening functions. This topology allows for

a loosely chronological basis for machine listening. It also makes clear a unique trait of

machine listening as compared to human listening: the different modes are quite strictly

constructive, in that each development in machine listening relies and builds on the previous

ones, much like an evolutionary process. A technology-centered approach additionally gives

access to a direct questioning of P. F. Strawson’s theory. In application, starting from a place

of broad, contextless ears, each addition of potential context seems to bring an increasing

ability to identify and specify.
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Without Listening

Imagine a microphone plugged into a magical tape recorder with an infinitely long tape.

This is the simplest form of a listening machine possible. The microphone observes and the

recorder scribes. This system knows nothing and does not attempt to interpret in any form.

While certain information about the recording itself is known, such as its sample rate, tape

length, and the mic specifications, this information is limited to the act of recording rather

than the subject of the recording. It exists solely to observe and record, given no external

context and needing none.

There is a strong similarity between without listening and Schaeffer’s ouïr. Both exist in

an unconscious, or perhaps pre-conscious, space. The physical response of one’s eardrum

to a vibration in the air requires no thought, and is completely autonomic. The primary

difference is that, in human listeners, ouïr is not manageable as a distinct action. While one

can certainly hear sounds and not think about them, it is impossible to intentionally sever the

connection between the ear and the brain. At any moment a sound physically experienced

can turn into a sound consciously experienced, through no effort on the part of the listener.

This is not the case with a machine. It is possible to create a machine (such as the one

described above) that exists only within the bounds of without listening, and can perform no

other function without external intervention.

Without listening serves as the foundation for all digital recording technology, and all

modern recorded material. Music, radio, speeches, and countless other messages come out

of this mode. It is completely without external context, more a means of transmission than

anything else.

Analytic Listening

Let’s connect our ear to a simple brain: our machine is now a microphone hooked up to

a computer. The microphone and the tape can record information; with a computer at the

other end, the machine can now look at the information. And it does so in the format most
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natural to computers: numbers. To a machine, all information is numbers, which is a simple

fact with far-reaching consequences to its listening capabilities.

The simplest way a machine can interpret sound data is through numerical analysis.

While this would be a large leap from without listening in humans, performing mathematical

operations on data is the simplest thing a computer can do. Most complex calculations are

composed of intricately layered simple problems of addition and multiplication, and thus

most methods of analysis take relatively similar amounts of technical complexity to execute.

There are a wide variety of forms this analysis can take, and a wide variety of tasks it can be

applied to. For example, the relative loudness of a sound can be calculated using the formula

dB = 20 ∗ log10(amplitude). The pitch could be analyzed through a spectrogram by

calculating the Fourier transform of the signal using the equation F (ω) =
∫∞
−∞ f(x)e

−iωxdx.

A series of simple equations can be put together to detect onsets in the sound signal, a

method that could form the basis of rhythmic tracking or phoneme recognition. The machine

could calculate the Mel Frequency Cepstral Coefficients, which gives a rough description of

the timbre of a sound.

At this level, the machine listener possesses the ability to numerically describe the

properties of the sound. What is important for this listening mode is that there is only

numerical analysis of the self-contained audio data; the only insights revealed come from

within the audio signal itself. While without listening contained strong similarities to a

biological listener, analytic listening contains the computational power of the ear. The

correspondence between the stereocilia of our inner ears and a logarithmic representation of

the audible frequency range means that this level of frequency analysis is largely done pre-

consciously in humans as well. The other forms of analysis are less clear, with timbre and

rhythm taking place somewhere in between our ears and higher thinking processes [78, 99].

Analytic listening forms the basis of methods for various scientific analyses and creative

musical sonic transformations. Even what is probably the simplest form of analysis, that of

"volume" determination, is used in nearly every piece of sound technology one would ever
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interact with. Numerical analysis is the machine equivalent of basic neural processing, and

is similarly fundamental to any type of sonic "understanding".

Relational Listening

We are now ready for a step that is almost always implicit in human listeners, but has not

yet been covered in the previous two categories. Our brain now contains knowledge, or

a computational approximation of it. I am defining computational knowledge as having

access to information that originated outside of a computer’s enclosed system. This is rather

abstract, but only by necessity, as it can take near infinite forms.

One of greatest possibilities gained through relational listening is that of comparison.

What previously existed only in isolation can now be mathematically compared and placed

within a context. For example, with outside knowledge a machine listener can say that, given

a frequency spectrogram of a piece of audio, the sound likely originated from a human voice.

Sounds can be compared directly with other sounds, allowing the possibility of finding

sounds that are similar to other sounds. In other words, with comparison comes qualitative

analysis, which is possibly a much more "human" interpretation than isolated self-contained

forms of analysis.

With the allowance of external communication, the creation of shared knowledge bases

becomes available. A machine listener can become part of a network, and that network can

share information with other networks. The creation of such databases removes previous

limitations on locality and access, allowing machine listening systems to be vastly greater in

size than previously possible.

Learned Listening

The final piece of technology that paves the way for a new kind of listening is that of machine

learning. This technology, often thought of as a machine approximation of "intelligence",

generally refers to any algorithm that can expand its knowledge and improve itself. In the
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same way that a least squares regression line is used in introductory statistics to approximate

the relationship between simple data, machine learning uses statistical methods to try and

model nonlinear relationships between data. The primary function of machine learning is to

build an accurate representation of data in order to precisely predict the "outcome" of future

input.

In relational listening, our machine was given the possibility of context. With learned

listening, context becomes the central component to the process of inference, which is at the

heart of machine learning. While machine learning allows for some kind of understanding of

complex relationships, machine learning systems still have to be given data by humans, and

that data carries with it implications about present and missing contexts. For example, an

algorithm trained to predict health outcomes of patients diagnosed with heart disease might

be trained using all the patients’ health data but exclude information about their income,

which could have a huge impact on their ability to make significant lifestyle changes. The

ability to consider information not provided is simply not an option with machine learning,

and thus, while learned listening is the closest to a human cultural listening that a machine

can be, but it is still lacking in essential ways.

Examples of learned listening can be found in corporate enterprises, government projects,

and academic research. Modern text-to-speech technology relies on machine learning, as

does music recommendation, and speaker identification. Nonlinear predictions are useful in

any number of big-data contexts, both broad and personal.

3.2.2 Purpose Driven

A disadvantage of technologically determined machine listening is its inconsideration of

the human. Rather than springing forth via spontaneous generation, machines with the

capability to listen are created by humans. Focusing only on the technology biases the

space of machine listening towards a machine understanding, where cultural and human

context isn’t important. Lumping machine listening into categories of technology orients
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musique concrète as closer to political propaganda than spectralism. While these points of

comparison may be interesting to explore, they fail to capture the human, which is essential

to the consideration of audio surveillance.

To enforce the human element of machine listening systems, we will go back to Gibson’s

ecological optics. If machine listeners are created to serve a purpose, what is that purpose?

Perhaps organizing machine listening by human intentions yields a more practically robust

and inclusive categorization. In such a topology, the ghost hand of the programming is made

evident, and machine listening can be accurately discussed as a tool used with intentions.

One possible category in this formulation could be to remember. Here is where we

would find machine listening employed for recording music, home videos, speeches, or

events. The purpose of these methods of listening is to capture their product for posterity,

either personally or at a larger cultural level. Such sounds could be used for later enjoyment

or as cultural artifacts, but their capture itself is the goal of this category. Another category

might be to identify. Here lie many types of analysis, used to calculate different qualities of

a sound. Audio fingerprinting, source separation, and music analysis tools would fit in this

category. The properties of the sounds are information in of themselves, and this category

seeks to quantify them for extraction and comparison.

A final category might be to understand. Whereas identification seeks to place sounds in

a sonic context, understanding tries to find a broader, extra-aural context for the creation and

result of sonic events. An example of this could be a machine listening systems created to

understand environmental conditions in a forest. There is significant evidence for the effects

of different medical conditions on the human voice [83], and a system that automatically

detected these and suggested diagnoses would certainly be an attempt to understand. An

automated speech recognition system would fall under identification, but a system that

includes some non-syntactic inference about the topic being discussed would be in this

category.
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3.2.3 Action Oriented

While it’s headed in the right direction, a purpose driven framework for machine listening

stops one step short. Intents may well be satisfactory for certain tasks, but machine listening

is ultimately an act of communication. There exists sound, or some aspect of sound, in the

world that humans use machine listening to access. In this respect, machine listening is a

kind of translation, communicating audition to human participants in formats of varying

directness from transliteration to syntactic mapping to poetic interpretation. As Claude

Shannon showed, communication exists to affect action, and this interpretation of intention

allows us to more accurately pinpoint the guiding force behind the machine systems: a force

that can be human, but can also be cultural, incorporated, and political. The recognition

of action as the driving motivation allows us to directly interrogate the desired effects of

machine listening. The following categories are not mutually exclusive, but rather seek to

try and envelop as much of machine listening as possible.

Consumption

Some machine listening systems exist to encourage consumption. These systems are born

out of capitalism, created to push products to generate value. The machine listening systems

themselves are not the goal, but serve as a kind of indirect advertisement for their products.

A clear example of a consumption-driven machine listening system would be a piece

of music recommendation software, the backbone of companies like Spotify, Pandora,

and Google Play Music. These programs are built to analyze and relate sounds for the

express purpose of encouraging continued use of their respective platforms. The music

chosen is meant to be enjoyable, but only insofar as user satisfaction equates to product

consumption and capital gain. One could cynically argue that applied machine listening in

music production software is also for consumption, and though this case may be easier to

make for some musics than others, I don’t seek to contain all of machine listening’s creative

applications to this category.

33



Learning

A second purpose for machine listening is to promote learning of some kind. For example,

this could be in a scientific context, encompassing projects like environmental soundscape

studies or linguistic pronunciation research. This category would also include medical

applications, where machine listening is used for automated analysis of various body signals

in an attempt to track and predict the body’s physical conditions. If the outcome of machine

listening is an attempt to learn for some advancement of knowledge, then it fits in this

category.

With that in mind, this is a somewhat disingenuous category. After all, science does not

truly seek to learn for learning’s sake, but follows the agendas of the people conducting

the research and the people funding them. A soundscape study could be conducted in

an urban environment under the guise of studying environmental noise levels, when it

could ultimately serve the function of protecting local industry from noise ordinances or

encouraging population flight towards a "quieter" part of town. Learning is an action, but it

is never without other motivations, though certainly not always negative. What this category

seeks to include are examples where the ultimate action-oriented goal is separate from the

third and final category.

Control

Another function for machine listening is to facilitate the control of people through disen-

franchisement and a negation of their agency. This is communication as a structure that

gives power: not abstract power, but direct power over another. Power can take many shapes,

but essential to any modern model of control is information. Some physical control could

be taken without a control of information, and potentially even be held as such, but in any

instance outside of brute threat of violence, power over information is necessary. Just as

eyes let you see people’s actions, ears let you hear their discussions, plans, and lives. If

one’s goal is to control the actions of others, machine listening can exist as a tool to translate
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their personal, interpersonal, and embodied information to that end.

3.3 Placing Mass Audio Surveillance

Audio surveillance can take many forms. While the application of specific technologies

can enable new possibilities for surveillance, it is clear that surveillance can, and does,

exist at all levels of technology. The key separation between audio surveillance and mass

audio surveillance, however, is the application of automation, whether that takes place in

the collection of data, its analysis, or its inference. This automation has several effects, all

of which serve to further mass surveillance’s goal of controlling speech, movement, and

existence.

In the world of technology and innovation, automation is used as a way to defer morality.

Decisions are made by the machines, and in instances where machines make immoral

decisions, they are forgiven—and their designers at most scolded—because of their perceived

amorality. While this is an essential part of automation, it seems almost irrelevant when

discussing surveillance, since the aforementioned decisions have already been established

as moral by those in power. It’s true that in public perception this deferment might be

inconsequential. It’s also true that arguing for the correct attribution of the immorality of

these decisions is possibly unimportant when the problem being addressed is immoral in

of itself. If one believes that surveillance is wrong to perpetrate, then the specific entity

that perpetrates it doesn’t make much of a difference. The replacement of human ears with

machine ones does not change the base morality of surveillance, but it does change its scope,

which places its morality into even starker relief.

While morality may be maintained, the logic underlying surveillance might not hold

up for machine listening. As discussed previously, P. F. Strawson hypothesized that, in a

purely auditory world, only qualitative identities are possible. The adjustment to that theory

added that, while both qualitative and quantitative comparisons are possible, non-sonic (or
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extra-aural) identification remains inaccessible. This is antithetical to the purpose of mass

audio surveillance, where algorithms devoid of other senses attempt to identify specifics,

from language to environments to individuals. From Strawson’s perspective, such specificity

is categorically impossible with only aurality. Yet it appears that machine listeners are

used to identify; the inclusion of methods of signal processing certainly give numerical,

quantitative information.

The advantages gained from giving machine listening systems complex technology are

found only in being able to speak with increased specificity about the sound itself. It is

undeniable that machine listening systems can determine incredibly minuscule, accurate

details about sounds. Increasingly, we’re even seeing systems that can calculate larger,

macro-scale sound information, which is a historically much more difficult task. But this

information does not reveal anything outside of the domain of sound. Inference beyond

aurality cannot be accomplished through aurality alone, and machines are not exempt from

this constraint.

Looking at machine listening systems, it is apparent that these algorithms are being used

as though they are. One can use an algorithm to approximate a sound’s timbre by calculating

its Mel Frequency Cepstral Coefficients, but the next step, identifying the instrument creating

the timbral markers, is not. That being said, an approximation can be made, which is what

machine learning relies on; in the end, all machine learning is a game of maximizing

probability rather than establishing truths. Yet a reasonable approximation for instrument

identification becomes an unreasonable one when applied to a valuation of human intent

and a determining factor of human life.

Audio surveillance is an example of using technology for a function for which it is

ill-equipped. As a means of enabling the control of peoples, mass audio surveillance takes

advantage of the fundamental human right and capacity for sonic communication and

misuses technology to place capitol value on that communication. This oppressive act is

only possible through the use of technology and its application in machine listening. Having
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built some theoretical foundation on which to stand, the specifics of audio surveillance can

be examined in practice. Through repurposing the same technology used in mass audio

surveillance, one can begin to counteract its existence.
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4
The Acoustic Counterfeit Machine

Having explored the theoretical foundations of mass audio surveillance, finding its hyper-

focus on identity and reliance on machine listening, an opportunity arises to use the properties

of the surveillance system against itself. This chapter contains the implementation of an

anti-surveillance tool inspired by that idea. Named the Acoustic Counterfeit Machine, or

ACM, this system is designed to hide speech from methods of mass audio surveillance, and

to do so in such a way as to not arouse suspicion. The ACM is built around a neural network

that matches acoustically similar sounds between source speech and a database. After a

brief overview, its complete structure is described in detail and its effectiveness evaluated.
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4.1 System Overview

An immediate problem in attempting to build an anti-surveillance system is that surveillance

systems, corporate or state, are unavailable for public perusal. While we cannot know

with absolute certainty how mass audio surveillance systems operate, we can take an

educated guess using a combination of the recent government leaks [15, 47], the public

effects of surveillance [97], and cutting-edge technologies of signal processing and machine

learning [35, 44, 101].

In a 2014 paper titled "Audio Surveillance: a Systematic Review", Marco Crocco et al.

present a thorough overview of the technology of audio surveillance used specifically for

automated contexts [35]. They outline four primary steps of audio surveillance: background

subtraction, event classification, object tracking, and situation analysis. For each category,

they present the most relevant foundational and contemporary research, giving an in-depth

look into the details of surveillance technologies. The authors are quite clear on their

intention for publishing such a review: "the present [survey] is specifically targeted to

automated surveillance, highlighting the target applications of each described methods and

providing the reader tables and schemes useful to retrieve the most suited algorithms for

a specific requirement" [35, p. 1]. This explicitly pro-surveillance attitude isn’t surprising

or unique within the scientific literature. At the time of this writing, the first four pages

of Google Scholar results for the term "audio surveillance" contain exactly one paper not

designed for the purpose of executing or enhancing surveillance. The one upside of this

general scientific appreciation for surveillance is that academic research in the subject is

public.

The following is a generic architecture of such a system, as adapted from "Audio

Surveillance: a Systematic Review" [35]:

1. Audio is indiscriminately captured from countless microphones

2. Audio undergoes background subtraction, isolating the foreground sounds from envi-
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ronmental noise

3. Audio is analyzed in real-time to determine the nature of its content as a classification

problem, with such categories as speech, music, environment, etc.

4. Audio that matches the class attempting to be surveilled is further analyzed in a

class-respective manner

5. The relevance of this further analysis is calculated by an algorithm

6. Any results deemed appropriately relevant are sent to a corresponding database or

human observer

Based on the paper by Crocco et al., an example of a mass audio surveillance system

looking for keywords in speech might read as follows: first, sound that microphones receive

is analyzed using a deep neural network to assign it a class. These neural networks are

computer algorithms trained to take input they’ve never seen before and give reasonable

output based on their prior experience. In this case, the neural network would receive

incoming audio and, based on its training data, attempt to place it within a general category.

Example classes might be: speech, noise, tones, rhythmic patterns, etc. Importantly, it is

likely that all such systems would also include a class for "other". Any audio that’s classified

as "speech" is decoded using an automatic speech recognition (ASR) algorithm. The ASR

output would be scanned for any instances of the specified keywords. If any are found,

the transcript and audio is sent to a database with tags specifying the keywords heard, the

location and time of the recording, and any other relevant information. This is the first point

in the process where it is likely a human would have access to the data. This is largely

because of the pure volume of data being collected and analyzed. If observers were actively

listening in at an earlier step, the whole of the United States would have to be employed to

surveil itself.

The goal of the Acoustic Counterfeit Machine (ACM) from a technical perspective is

to hide sounds from methods of mass audio surveillance. But what does it mean to hide
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from a machine listening system as described above? Specifically, to hinder the ability

for a surveillance system to perform the fourth step, when the audio is analyzed in a

class-respective manner (ASR in the case of speech).

There are a few reasons to not attempt intervention at previous or later steps. Firstly, a

direct stoppage of any of the steps past the first would require a software installation on the

machine either collecting or processing the audio. Access to the machine processing the

audio is rarely an option; it’s possible the processing may happen on the device doing the

recording (e.g. a phone or laptop), but it’s next-to-impossible to know if that’s the case, or if

the audio is instead being sent elsewhere to process. Trying to disrupt the recording process

of the microphone would be reasonable if one desires to secure a single device from being

used for surveillance, but loses feasibility when considering the wide array of microphones

available for listening. Both of these also assume an unbreakable security and robustness of

a software solution. While this assumption underlies much of modern-day life, it is tenuous

at best; major software hacks and database leaks are almost weekly news stories. If a team

of professional security experts have difficulty with those issues, I would hesitate to offer a

solution myself.

The Acoustic Counterfeit Machine is designed to mask audio in the physical domain,

before it ever reaches a microphone. This gives it the advantage of being a self-contained

system that cannot be accessed through any external connection. The key idea of my system

that makes it unique compared to other attempts at masking is that it seeks to alter the audio

content to confuse step three while not switching the classification of step two. In other

words, if the target audio is speech, my goal is to make the microphone hear other speech,

rather than noise, silence, or any other sound.

Why is this important at all? For example, physics tells us that there’s no better acoustic

mask than pure white noise, which (theoretically) contains all possible frequencies at once.

As early as 1950 we knew that, if one placed a speaker in a room and played incredibly

loud white noise, it would be impossible for any algorithm to reasonably reconstruct human
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speech from the resulting mix [51]. This is certainly true at multiple steps in the process

as well, as an algorithm designed to classify sound would never classify white noise as

speech. However, such an algorithm would likely have a class corresponding to "other"

or "suspicious" sounds. A sudden shift in an environment from silence or speech to loud

white noise would almost certainly be categorized as immediately suspicious in some regard,

and would be flagged for further examination. By the automated nature of mass audio

surveillance, this highly effective masking only serves to draw attention to the fact that

sound is being hidden. By making an acoustic mask that maintains the contextual domain

of the original sound, my system can effectively hide sounds without broadcasting their

non-presence.

The construction of the ACM is shown in Figure 4.1. The architecture, which I will

explain in depth in the subsequent sections, is briefly outlined below:

1. A comparative database is created to calculate approximate matches between the

spectral features of spoken words

2. That database is used to generate training data to an LSTM (Long Short Term Memory)

neural network, designed to match spectrally similar audio in a real-time context

3. Live input is fed through the neural network and an ideal mask is calculated

4. The calculate mask is played over a speaker, with a delay of <15ms between the

reception of the input audio and the sonification of the matching mask

4.2 Approximate Matching Database

The purpose of the neural network in the ACM is to take incoming speech sound and convert

it to similar sounding speech sound. To train a neural network, one needs a huge amount of

data, and this network needs that data in the form of an input sound and a corresponding
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Figure 4.1: An outline of the Acoustic Counterfeit Machine architecture. First, a
corpus of speech data is used to populate an approximate matching database. This
is used to generate training data to a neural network. In a real-time context, live input
is fed through the neural network and the output is used to generate an ideal acoustic
mask, which is then played through a speaker.

"matched" sound. There does not exist a database of matched sounds, nor does there exist a

front-facing database interface that allows one to compare new sounds to the ones found

in the database using arbitrary feature sets. Thus, it quickly became clear that I needed to

create my own database construction that allows for flexible and speedy sonic matching.

The first step in this process was procuring a corpus of recorded audio. Because my

system was meant to operate on speech at a reasonable perceptual time-scale, I wanted to

create the database (and thus the whole system) around individual spoken words. I used a

compilation of six different data sets, all of which are available for free download in the

FLAC file format. The list was from a compilation by Shtooka, a multilingual database of

audio recordings of words and sentences [7]. Three of the data sets I used were sourced
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directly from Shtooka (titled: eng-balm-emmanuel, eng-balm-judith, eng-balm-verbs), one

was from the Wikimedia Foundation’s pronunciation database (titled: eng-wcp-us), and two

were from WimsEdu (titled: eng-wims-mary, eng-wims-mary-num). The files are from four

different speakers with the exception of the Wikimedia Foundation data set, which has many.

These six data sets were the entirety of the available corpus that met the requirements of

being individual audio files of single spoken English words. In total, the complied corpus

consists of 14,449 audio files, each corresponding to a single spoken word. The spoken

words were not necessarily distinct, meaning that there could be (and certainly are) multiple

recordings of the same word spoken by different individuals. This number of files may

seem excessive, but in the context of speech training its quite minimal. For a commercial

system, one would want as many speakers as possible for as many words as possible, ideally

numbering in the hundreds-of-thousands, if not millions. For example, Google’s Speech-to-

Text transcription software has the entirety of YouTube as only one of many sources to draw

data from. In addition, live systems can retrain as they operate; any product that uses Google

Speech-to-Text is constantly sending their data back to retrain and improve the networks.

For the scope of this version of the ACM, however, 14, 449 files were enough to train and

operate with reasonable accuracy and efficiency.

With all the sounds in one place, the next step was defining the structure of the database.

The most similar class of problems to draw solutions from are those of audio fingerprinting.

Audio fingerprinting is the task of finding or creating a sound’s unique fingerprint, or

lower-dimensional identifying characteristic set, which can then be compared to other

fingerprints for quick and efficient searching. A simple diagram illustrating a standard audio

fingerprinting setup can be seen in Figure 4.2. Matching sound to other sound is a difficult

task as an audio file cannot be described by a single number or a simple vector. I wanted to

have the flexibility of attempting to match files based on a number of different audio features,

so a matching algorithm was needed that could adapt to map different high-dimensional

feature spaces. Additionally, a strict audio fingerprinting database wouldn’t work for this
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task, since its purpose is to find approximate matches rather than exact ones. What I settled

on for the approximate mapping was using locality-sensitive hashing, or LSH. Hashing is

the process of converting input data to an identifying data tag of a set size. Hashing is used

in many different technologies, though it’s most-often discussed in relation to cryptography.

The purpose of locality-sensitive hashing is to reduce the dimensionality of a data set while

attempting to preserve statistical likelihood that similar data in the higher-dimensional space

will end up nearby each other in the lower-dimensional space. LSH has a strong history of

use in matching contexts where efficient searching is of a high priority [68, 84, 91].

Figure 4.2: A simple commercial audio fingerprinting system. Source: https://
www.mufin.com/company/technology/

Now that the database structure was organized, the database needed to be created and

tested. Functionality was created to allow for different feature mapping of the database,

including mel-scaled spectrograms (henceforth called mel spectrograms), mel-frequency

cepstral coefficients, and root-mean-squared energies. Loosely, mel spectrograms are a
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description of frequency content, biased towards the non-linear representations of frequency

in human speech [23]; mel-frequency cepstral coefficients (MFCCs) are a description of

timbral qualities [76]; root-mean-squared (RMS) energies are a description of volume [64].

The database was built and tested with each of these features, but ultimately the mel spec-

trogram was chosen. This is partly because it contains more speech-variant information

compared to an MFCC or RMS, and partly because the final step of the system, the acoustic

masking, was chosen to be frequency-reliant. To make the masking process as simple as

possible, sounds with similar perceptual spectral content to the live input were desired, and

so the machine learning system needed training data that corresponded to that relationship.

While standard frequency could have been used, mel-scaled spectrograms represent que-

frency-domain information, where quefrency is the spectrum of the log of a waveform in

the time-domain [56]. As quefrency is a closer approximation of the frequency banding in

human speech, the database was set up to match across the quefrency domain.

Of the 14,449 files available, a random selection of 10,000 were used to build the

approximate matching database. The remaining 4,449 were queried against the database

as input, and their corresponding matches were recorded. To test the database, the 10,000

original files were also queried as input. They all returned their original audio fingerprint,

and thus constitute "exact matches", confirming that the LSH function was properly used.

A selection of the 4,449 "inexact matches" were compared to their matching pairs using

a distance calculation on their respective mel spectrograms. They were found to be very

close to their calculated matches, further validating the LSH functionality. Subjectively,

the inexact matches shared many similar properties of the original source files, often both

corresponding to a similar pattern of consonance and vowels, especially with regard to

plosives, as well as a similar tonal inflection.

At the end of the database creation, two text files were written: one that stored the file

names of the "exact matches" (which match onto themselves), and one that stored the file

names of the "inexact matches" along with their corresponding matched file (one of the
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10,000). This construction allowed the training of the machine learning algorithm to be

tested under ideal (exact) and non-ideal (inexact) conditions.

4.3 Neural Network

With an approximate matching database, it’s possible to match incoming sound to a

previously-identified one. So why does the matching portion of the system not just stop

there? The primary issue with only using an approximate matching system is about time.

Possibly the greatest unsolved mystery with computational audio analysis is how to con-

sider time. In a generalized sense, audio can carry important information in a variety of

timescales, even simultaneously. For example, in a recording of the first movement of

Beethoven’s Fifth Symphony, one could only consider time at a minute scale, where the

most salient information would be found regarding pitch envelopes and attack timings. At

a slightly larger timescale, one could analyze the piece on the level of eighth notes and

build a harmonic road map of the pitch progressions. Zoomed out even more, one could

attempt to group phrases together and infer some qualities about the unique manner in which

Beethoven starts and ends a musical phrase. Finally, looking at the entire movement as a

single sonic entity might lend to fascinating insights about the regurgitation and rewiring of

musical components within the movement.

It’s rare that issues of timing are even that simple, however. The above example would

be relatively trivial if we were analyzing a midi piano roll, where each note came at an

exact time and distances between rhythms were exactly measured. In a live recording of the

symphony, there are frequent tempo changes, ritardandos, accelerandos, and other forms

of rubato. While one’s chosen timescale might accurately segment the first two notes from

each other, it is likely it would be incredibly offset by halfway through the opening motif.

These issues carry over to speech, which is the chosen medium of this system. Ideally,

the design is such that there is some built-in understanding of a single word. Yet there
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is clearly no set length for what a single word sounds like. The 14,449 recordings vary

in length from 0.5 seconds to 3 seconds. While this may seem like a small difference to

a human brain, it’s incredibly challenging for a computational system to understand data

at such different timescales. This is the reason why the system has at its center a neural

network, and why a Long Short Term Memory (LSTM) architecture was chosen.

Because of their ability to operate on longer and variant timescales, LSTMs have long

been a popular choice among audio researchers. In 2000, F.A. Gers and J. Schmidhuber

suggested an exploration into using LSTMs for musical rhythmic analysis in their paper

"Recurrent nets that time and count" [45]. Shortly thereafter, a number of studies using

LSTM for music generation tasks were published with supportive and encouraging results

[38, 39]. More recently, LSTMs have been used to identify larger musical structures [37],

model and compose polyphonic music [48, 66, 67], perform automated speech recognition

[48], and analyze music’s emotional affect [33].

An LSTM is a widely used sub-type of a recurrent neural network. While neural

networks are designed to learn non-linear relationships between inputs and outputs [52],

they don’t generally have any concept of memory. Each input is separate from each other

input, and so a standard neural network considers each in isolation. Any task that relies

on some sequential or cause-effect relationship can’t be naturally understood by a neural

network. This presents a huge problem in any signal analysis, since earlier signal information

is generally needed to understand later signal information.

Recurrent neural networks (RNNs) seek to solve this problem by introducing the idea of

persistence [22]. Information from an RNN node is used as part of the input to the following

node. With the ability to pass information from one time step to the next, RNNs have a kind

of proto-memory, allowing them to use past information to help in their predictions. In a

classic RNN, however, that memory is fairly limited [19]. If a network needs information

that it received three cycles ago that’s alright, but if it needs to learn over a longer period

then the information is lost too quickly [54]. Additionally, traditional neural networks have
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Figure 4.3: A diagram of the structure of an LSTM module. The yellow rectan-
gles represent neural network layers and the red circles represent mathemati-
cal operations. Xt is a time-slice input, ht is an output, σ is a sigmoid layer, and
tanh is a tanh layer. x and + are multiplication and addition, respectively. Source:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

less flexibility with varying timescales, where certain data is longer or shorter than other

data.

Long short term memory networks (LSTMs) are designed to solve both of those problems.

Their structure, outlined in Figure 4.3, is designed specifically to hold onto information for a

very long time. First described in a 1997 paper by S. Hochreiter and J. Schmidhuber [55], the

structure of LSTMs is more complicated than a standard RNN, with four layers instead of

just one, but the important aspect to understand is that information is largely persistent from

cell to cell. The horizontal arrow across the top section of the cell shows that information is

passed directly from a previous state to the following state, with only slight modification

from the current cell’s state. This is the key feature that allows for longer sustained memory.

The task I used the LSTM for was to classify incoming audio as belonging to a matched

audio class, as determined by the approximate matching system. The training and testing

data was generated by first selecting random classes according to how many were desired

for training in proportion to the total number of exact vs. inexact matched sounds. In other

words, with exact matches constituting approximately 70% of all available sounds, there is a

70% chance that any randomly chosen class will be an exact match, and a 30% chance it
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will be an inexact match. The maximum number of classes I could have chosen was 10,000,

as any inexact match would be classified as "belonging to" one of the exact matched classes.

While working on the system, the task was originally one of binary classification, attempting

to tell the difference between only two audio samples. When that was sufficiently successful

the task was expanded to an increasing number of classes.

The concatenated training signal then needs to be processed and segmented in accordance

with the LSTM structure. LSTMs take as input sequences of data, where each sequence

is often called a batch. Though I tried different ways of approaching this step, since the

system is run in a real-time setting, the training data needed to be formatted as it would be

in the real-time setting. I went through and chopped the audio into segments approximately

0.279 seconds long that overlapped with a hop size of approximately 0.003 seconds. The

spectrogram of each segment is calculated individually, then scaled to fit between 0 and

1. The spectrogram is transposed so the time-steps, which were previously columns, are

now rows. Finally, the first n time steps are put in a list, representing a single sequence of

data. Correspondingly, a single class value from the concatenated class list is added to a

training data set, representing the matched class for the first time step of the audio segment.

This process is iteratively calculated over each segment in the extended audio file until two

final sets of data are created: a list of time-step-oriented spectrogram sequences and a list of

matching class identifications. This is the final form of the training data for the LSTM.

An equal number of instances of each selected audio file were loaded for the training

data, and their order was randomly chosen. For the majority of trials, 30 copies of each

audio file were loaded in a randomized order. The audio was concatenated into a single

audio file of extended length. As each instance was loaded into the training data it underwent

a series of semi-random transformations. Each of the transformations were meant to both

boost the data—a practice which increases the noise in a given data set, which can both

help in neural network training accuracy and in avoiding over-fitting—and make the system

more robust to real-world acoustic possibilities that the system may encounter. First, the
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files were time-stretched (with maintained pitch) using Librosa’s stretch function, which

uses a phase vocoder time-stretch method. The quantity and direction of the stretch was in

accordance with a random Gaussian centered at 1.0 with a standard deviation of 0.1.

Next, a random signal to noise ration (SNR), determined by a random dB value between

0 and 60, was achieved with the addition of Brown noise. As opposed to white noise, which

is a signal with all possible frequencies present at equal amplitude, brown noise has an

amplitude rolloff of −3dB per octave. Brown noise was chosen because of its similarity to

arbitrary environmental noise. Finally, the signal was modulated with a linear amplitude

ramp on the beginning and the end of the file, the length of the ramps being determined

by random numbers up to a max length of 0.25 seconds. This was to make the system

more robust to potential differences in vocal attack or decay. For example, "happy" can be

spoken with a variety of different pronunciations of "h", ranging from hard to soft. However,

since it’s likely the rest of the word would be pronounced the same regardless, all of those

instances should ideally map to the same audio file of someone saying "happy". Once all

transforms were applied, the resulting signal was added to the previous concatenated signals.

Simultaneous to this process, a single concatenated list was created containing the correct

matched class identification at each time step.

The chosen classes along with their transformation parameters were saved in a text file

so that later instances could track and use the same data for bug-fixing and optimizing.

At this point, there are two large lists of numbers for the training data: one of audio

signals and one of corresponding class identifications. The data formatting is not yet finished

for two reasons. First, the training data must be in the form of mel spectrograms instead of

audio, as this was how the task was structured and how the approximate matching database

was organized. Secondly, a long list of data cannot automatically be segmented into separate

sub-sequences of data. LSTMs can take many different forms of input, but essential to their

application is the use of sequences of data. This process, detailed below, can be seen in the

batch function in Listing 4.4.
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The concatenated training audio file is split and walked through with a window size of

6144 (or 2048 ∗ 3) frames and a hope size of 64 frames. At each step, the window of audio is

right-padded (concatenated on the time-wise end of the window) with 2048 frames of 0s. A

longer window for the spectrogram calculation allows for better estimation of low-frequency

values, as the FFT algorithm requires a signal to exhibit a number of repetitions before it

is recognized as a frequency presence [87]. Allowing the signal to complete repetitions

before the end of the spectrogram window is essential, so while 0-padding doesn’t add any

frequency information, it ultimately increases frequency resolution. The reason a longer

audio window isn’t taken is because the length of the audio window is equal to the amount

of delay between input and calculation in the real-time version of the system. Thus, the

smaller the audio window taken, the shorter the delay. The window size remains as small as

it is because human speech doesn’t generally fall below 85 Hz [61]. Additionally, padding

the signal to a total length of 2048∗4 results in a signal of length a power of 2, which greatly

speeds up the spectrogram calculation.

Once the sub-signal is padded to the appropriate length, the mel spectrogram is calculated

on the sub-signal. The mel spectrogram operates with 128 mels, a window size of 2048, and

a hop length of 512. While lower mel values can be sufficient for certain audio tasks, and

are indeed much more space- and time-efficient, for high frequency resolution tasks such as

speech, a full 128 mels worked best, as shown both in theory and in my testing. A sequence

of spectrogram information is then created using shingling, a term originating from internet

search algorithms but which has significant advantages over other methods when applied in

audio contexts [27]. The spectrogram is transposed, such that the time-steps, which were

previously represented in the spectrogram’s columns, are now represented in its rows, with

the frequency information in its columns. Though not a part of shingling, the data is then

energy normalized to ensure robustness to general differences in energy amplitude. The

data sequence is created by appending the first n rows of the transposed mel spectrogram

into one list. Different values of n were tested, and ultimately a sequence length of n = 10
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samples ( 0.3 seconds of audio) proved to result in the highest accuracy.

1 d e f b a t c h ( s i g n a l , matches , h o p _ l e n g t h = 5 1 2 / 8 ) :
2

3 s i g n a l _ b a t c h _ l e n g t h = 2048∗3
4 d a t a = [ ]
5 c l a s s e s = [ ]
6 b a t c h e d _ f r a m e s = [ ]
7 c u r _ f r a m e _ c o u n t = 0
8 num_to_add = s i g n a l _ b a t c h _ l e n g t h
9

10 w h i l e c u r _ f r a m e _ c o u n t < l e n ( s i g n a l ) :
11 b a t c h e d _ f r a m e s . e x t e n d ( s i g n a l [ c u r _ f r a m e _ c o u n t : c u r _ f r a m e _ c o u n t +

num_to_add − 1 ] )
12 r e c e n t _ s i g n a l = np . a s a r r a y ( b a t c h e d _ f r a m e s )
13 r e c e n t _ s i g n a l = np . pad ( r e c e n t _ s i g n a l , ( 0 , 2048) , ’ c o n s t a n t ’ ,

c o n s t a n t _ v a l u e s = ( 0 . 0 , 0 . 0 ) )
14 spec = g e t _ s p e c t r o g r a m ( r e c e n t _ s i g n a l , 22050 , n_mels=n_mels ,

d i s p l a y = F a l s e )
15 t r a n s p o s e d = spec . T
16 s c a l e r = MinMaxScaler ( f e a t u r e _ r a n g e =( 0 , 1 ) )
17 t r a n s p o s e d = s c a l e r . f i t _ t r a n s f o r m ( t r a n s p o s e d )
18 comp_cols = [ ]
19 f o r i i n r a n g e ( 0 , s e q _ l e n g t h ) :
20 comp_cols . append ( t r a n s p o s e d [ i ] )
21 d a t a . append ( comp_cols )
22 c l a s s e s . append ( i n t ( matches [ c u r _ f r a m e _ c o u n t −1]) )
23

24 # P r e p a r e v a r i a b l e s f o r n e x t i t e r a t i o n
25 b a t c h e d _ f r a m e s = b a t c h e d _ f r a m e s [ i n t ( h o p _ l e n g t h ) −1:]
26 c u r _ f r a m e _ c o u n t += num_to_add
27 num_to_add = i n t ( h o p _ l e n g t h )
28

29 r e t u r n da t a , c l a s s e s

Figure 4.4: Function to split a batch of training data into sequences of correctly or-
dered spectrogram data.

The above steps are taken to calculate each sequence of training data. Once a sequence

is calculated, it’s added to a growing list of all calculated sequences. A single value for the

class corresponding to the sequence’s last value is added to a corresponding list of class

sequence data. Then the audio window is shifted over by 64 frames and another sequence is

calculated.

For a small number of classes, the data can be organized just as stated and then fed to the

neural network to train. However, as the number of classes increases, the amount of memory
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and CPU usage becomes intractable. To solve this problem, I switched to a mini-batch

structure of training. The only significant difference in mini-batch learning is that the data is

fed to the network in small "batches", instead of all at once. Thus, instead of calculating the

entirety of the training sequence at once, a portion of it can be calculated and then fed to the

neural network to train before the next portion is calculated. This saves significant memory

usage and makes it possible to train with much larger amounts of data. Different numbers

of sequences were tested for the size of the mini-batches, but I ultimately settled on 5000

sequences-per-mini-batch.

I arrived at the technical details of the LSTM architecture by starting with similarly-

purposed LSTMs from the scientific literature and adjusting the structure until the network

was optimized for my task [CITATIONS NEEDED]. The machine learning python library

used was Keras [3], which is built on top of TensorFlow [10]. The code for the creation of

the LSTM model can be seen in Listing 4.5. The network was built as a Sequential structure,

which allows for intuitive stacking of neural network layers by letting Keras handle some of

the low-level parameterization behind the scenes. The network only has two layers: one

visible layer that accepts the input data, and one hidden LSTM layer with l LSTM neurons or

blocks. The input data was in the shape of (10, 128), which corresponds to a single sequence

of 10 sequential 128-dimension mel spectrogram time slices. The number of LSTM neurons,

l, was changed depending on the number of classes. For training the network with 50 classes,

350 neurons were sufficient, and for MAXV AL classes, MAXV AL was the final chosen

value. Also in the hidden LSTM layer were two dropout values, one for the standard inputs

and one for the recurrent state. These dictate the percentage of values that are lost in the

passing and transformations of the data. Both of these values were set to 0.1.

The output layer has a softmax activation applied. The model was compiled using a

sparse_categorical_crossentropy loss method, which is a standard choice for classifica-

tion models where the data values are integers rather than one-hot encodings. The adam

54



1 l s t m _ o u t = 350
2 d r o p o u t = 0 . 1
3 d r o p o u t _ r = 0 . 1
4 n u m b e r _ o u t p u t s = NUM_CLASSES_USED
5

6 model = S e q u e n t i a l ( )
7 model . add (LSTM( l s t m _ o u t , i n p u t _ s h a p e =( s e q _ l e n g t h , n_mels ) , d r o p o u t =

dropou t , r e c u r r e n t _ d r o p o u t = d r o p o u t _ r ) ) # LSTM i n p u t l a y e r
8 model . add ( Dense ( number_ou tpu t s , a c t i v a t i o n = ’ so f tmax ’ ) ) # Outpu t l a y e r
9 model . compi l e ( l o s s = ’ s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y ’ , o p t i m i z e r = ’ adam ’

, m e t r i c s = [ ’ a c c u r a c y ’ ] )

Figure 4.5: Creation of LSTM model / architecture.

optimizer was chosen and the chosen metric to optimize was accuracy. The final training

parameter is the number of epochs, which is the number of times a training set is passed

through the network. To increase accuracy but avoid over-fitting, the epoch accuracies were

tracked and graphed over time, and 4 epochs gave the best results. The execution of the

model’s training can be seen in Listing 4.6. An example of the network accuracy throughout

the training process can be seen in Figure 4.7. The mini-batch training itself is shuffled,

which means the order of the sequences within a mini-batch are randomized to further

alleviate over-fitting.

At the conclusion of the batch processing, the model was saved to a file so it could be

loaded for the testing and execution of the real-time system.

The system successfully trained models with up to 200 classes, but even with the mini

batch processing, the memory requirements with more classes were unfeasible on the server.

I migrated the code over to Dartmouth College’s High Performance Computer cluster,

named Discovery (see: http://discovery.dartmouth.edu). After refactoring the

code to work as a python script, I wrote batch processes to execute multiple training trials

with higher class numbers. The debugging and running of these trials wouldn’t have been

possible without the help of the Research Computing team at Dartmouth, for whom I am

very grateful. With Discovery’s resources, I was trained models with class numbers up to
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1 b a t c h _ l e n g t h = 5000 # In # of s e q u e n c e s
2 aud io_hop = 64
3 batch_window = b a t c h _ l e n g t h ∗ aud io_hop # In # of f r a me s
4

5 w h i l e s t a r t _ p o i n t + batch_window < c o m p o s i t e _ s i g n a l _ l e n g t h :
6 e n d _ p o i n t = s t a r t _ p o i n t + batch_window
7

8 # Compute b a t c h o f t r a i n i n g d a t a
9 t r a i n i n g _ d a t a , t r a i n i n g _ c l a s s e s = b a t c h ( c o m p o s i t e _ s i g n a l [ s t a r t _ p o i n t

: e n d _ p o i n t ] , c o m p o s i t e _ m a t c h e s [ s t a r t _ p o i n t : e n d _ p o i n t ] )
10 t r a i n i n g _ d a t a = np . a r r a y ( t r a i n i n g _ d a t a )
11

12 # T r a i n t h e model
13 h i s t o r y = model . f i t ( t r a i n i n g _ d a t a , t r a i n i n g _ c l a s s e s , epochs =4 ,

b a t c h _ s i z e = b a t c h _ s i z e , v e r b o s e =0 , s h u f f l e =True )
14

15 # A d j u s t f rame p o s i t i o n f o r n e x t i t e r a t i o n
16 s t a r t _ p o i n t += batch_window

Figure 4.6: Execution of LSTM model training.

Figure 4.7: The accuracy of the LSTM on a 200-class training example. Each epoch
is represented with accuracies on the y-axis and each mini-batch execution on the
x-axis.

56



1500. While a higher number would have been possible, it would have taken significantly

more time, and 1500 was more than sufficient for the purposes of the installation.

4.4 Real-Time Masking and Evaluation

The determination of the specifics of the masking techniques occurred alongside the devel-

opment of the real-time system. The real-time component of the ACM was developed for

the express purpose of use in the art installation, and thus it’s architecture were optimized

for this specific artistic context. It is quite possible that, if the system were engineered as a

strictly technical demonstration, the real-time component would look quite different.

The real-time system is written in Python because of the language’s flexibility and the

possibility for exact technical correspondence to the methodology used in the training of

the neural network. Neural networks are great at seeing data in the same form they’ve

seen it before, but if that form is slightly off they can be wildly inaccurate. If the real-time

system had been built in Java, for example, it’s possible that the specific mel spectrogram

calculations used would slightly differ from the original python Librosa version, which

would potentially cause significant errors in the neural network’s prediction task.

Because the system needs to operate with as little delay as possible, the most important

factor in its architecture and coding is efficiency. The Python Multiprocessing package

(https://docs.python.org/2/library/multiprocessing.html) was the

primary chosen optimization solution. Multiprocessing provides methods for running

concurrent operations by putting them in separate processes. It’s a common solution to

Python optimization problems, as it allows for true concurrency with the advantage of safe

shared data structures, as opposed to alternatives like the Threading module.

Building concurrency into the program involved finding which processes can exist as

separate entities, and which rely on other processes to complete first. In an unfortunate stroke

of luck, it became clear during the organization of the script that three required libraries
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for the real-time processing (pyAudio for streaming audio i/o, Librosa for the spectrogram

calculation, and Keras for the loading and querying of the LSTM) all break when placed

outside of the main process of a program. In other words, the three most essential pieces of

the program—and likely the three most time-consuming pieces—must operate in the main

process of the program and cannot be paralleled. This made the efficiency of the program a

much more challenging problem than would otherwise be the case, and necessitated a rather

convoluted series of sub-processes to try and unload as much of the computing power off of

the main process as possible.

To determine the necessary acoustic masking, I first conducted a series of qualitative

tests. After recording a clean example of sample speech, I then recorded and spliced a

corresponding audio track of potential matched speech, attempting to keep output in line

with the reality of the ACM. I then tested different ways of combining the two audio files

to maximize the perception of the second over the first, keeping the volume of the original

track constant, as that will not be changed by the ACM. With the matched audio played at

the same volume and simple filtering applied to the original, the matched audio sounds much

more prominent. Different filters were tested, and rough EQs, phase shifting, and delays

all seemed to effectively obscure the original speech. While exploring different methods

of composing the real-time acoustic mask is a desired step of the ACM, time constraints

limited the implementation to only the simplest possibility: that of playing the matched

sound directly over the source speech.

It is at this point where a problem with an evaluation of the system came about. As

defined by its application in the future installation, success of the ACM is defined by

its ability to "fool" automated speech recognition (ASR) systems. The purpose of the

ACM’s specific contextual approach to acoustic masking was designed to also deceive sound

classification systems. Because of the proprietary nature of state-of-the-art corporate and

governmental software that performs these tasks, sufficient evaluation would require the

creation of similar systems from scratch. This is not a trivial task, and due to time constraints,
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the scope of the system’s evaluation needed to be limited.

Unfortunately, a similar problem surfaced in the ASR evaluation method. Commercial

ASR software is incredibly advanced, but licenses to use frameworks like Google Cloud

Speech-to-Text or IBM’s Watson Speech-to-Text can be quite expensive if not used in a

significantly limited setting. There are a few open-source tools for ASR that are well-

documented, and I ended up building a custom real-time ASR program with CMUSphinx

[89]. This database, put out by Carnegie Melon, is the most advanced open-source ASR

system available. A framework for working with the database, called PocketSphinx, can be

easily programmed in Python. Despite its advantages over comparable options, however,

CMUSphinx and PocketSphinx aren’t reliably accurate on arbitrary speakers and generic

speech recognition. It performs quite well when focused on keyword recognition, or when it

can be retrained on text from specific speakers. Though the ASR software is not reliably

accurate on unconstrained, completely unedited speech, a difference in the accuracy between

unedited speech and masked speech recognition still gives some rough estimate of the

ACM’s effectiveness.

There were two tests conducted in a sound-isolated environment with two laptops, two

microphones, and a single speaker. The first test was run without the ACM activated, and the

first laptop simply played a set of 250 recordings of single words with 2 seconds of silence

in between over the speaker, recording the exact words played as well as their timings. The

next test followed the same format but with the ACM activated, playing the original source

audio and the real-time mask simultaneously. The other laptop was running a real-time

ASR system in PocketSphinx, and the output of this system was also written to a file with

the transcription timings. The two files were matched up using the timing information

and compared. The tests were evaluated by two measures. First was the percentage of

exact matches that were obtained, where the ASR output was the exact same as the original

input. The second measure was the percentage of approximate matches, where the ASR

transcription contained the original input, but didn’t need to be only the input.
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On the set of 250 words, the unmasked audio was partially matched with an accuracy

of 37.6% and the masked audio was partially matched with an accuracy of 12.5%. With

exact matching only, the unmasked audio had 35.9% accuracy and the masked audio had

only 0.9% accuracy. This means that on approximate matching tasks, the ACM was shown

to cause a ∼ 3x decrease in accuracy of the ASR, and on exact matching tasks, the ACM

caused a ∼ 40x decrease in accuracy.

The difference in the approximate match rate and the exact match rate for the masked

audio is corroborated by looking at the resulting transcriptions. The majority of the examples

of this disparity contained two or three transcribed words, one of which would be the original

unmasked word, the others of which would be amalgamations of the original word and the

masking audio. For the masked audio, the 12.5% accuracy of the approximate matches

certainly isn’t as impressive a number as the 0.9% for the exact matches, but it should

be emphasized that approximate matches can be incredibly difficult to decipher. If only

one-third of a transcribed piece of audio is correct, it should not be said that the transcript

is particularly accurate or easily discernible. For practical use against an arbitrary ASR

system, the ACM would likely decrease the accuracy of the transcribed audio by an amount

somewhere between the 3x and 40x results.

These results are incredibly encouraging and demonstrate the potential of the ACM in

hiding sounds from methods of mass audio surveillance. In the future, steps can be taken to

increase the effectiveness of the system in a number of ways. First, the number of trained

audio classes could be increased by a significant factor; ideally there would be on the order of

10, 000 audio classes for the LSTM. A significant roadblock with the masking process is the

inefficiency of the used Python libraries, and further investigation into different approaches

to the live processing would be necessary moving forward. Once those are addressed, the

masking process should contain some form of spectral matching between the matched audio

and the live input to better disguise the original sound. As a primary method of evaluation, a

customized audio classifier network needs to be made to test whether the perceived resulting
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sound does indeed get categorized as "speech".

There are many tweaks that could improve the efficacy of the Acoustic Counterfeit

Machine, but its results thus far show the strength in the chosen technologies and methods.

As a vehicle to revalue speech, the ACM marries theories of machine listening to the

practical reality of audio signal processing, taking advantage of the technologies of mass

audio surveillance to pointedly counteract them. With the ACM as an established, working

system, it can now be shown for public feedback, paving the way for its function as apart of

an art installation.
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5
Towards an Installation

Presented below is first a documentation of a technical demonstration of the Acoustic

Counterfeit Machine that took place on April 20th, 2019. The technical aspects of the

demonstration and the public feedback to it are explored. Following this is a description and

justification of a future art installation design using the ACM, built on the theoretical and

political foundations established in Chapter 3.
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5.1 Technical Demonstration

The Acoustic Counterfeit Machine was demonstrated on April 20th, 2019, in the Garage at

the Hopkins Center for the Arts at Dartmouth College. The demonstration was designed as

a way to showcase the effectiveness of the ACM in a realistic surveillance context, as well

as investigate its operation as an artistic process. The primary purpose of the demonstration

was to get feedback on the clarity of the ACM in an automated speech recognition context:

was it obvious what the ASR was doing, what the ACM was doing, and how the ACM

affected the ASR?

The setup, seen in Figure 5.1, involved one laptop running a customized ASR program.

Built on PocketSphinx, it was connected to Processing via OSC, an internal messaging

protocol. Processing is a Java-based program used for programming visual arts [6]. The

connected system was quite simple: when a phrase was recognized by PocketSphinx, it was

sent to the Processing program, where the phrase appeared on a projected display, seen

in Figure 5.1c. The most recent messages are displayed in a vertical list, which scrolls

upwards when more messages are received or there is a significant period of time in which

no messages are received. The computer is connected to a microphone to try and increase

the ASR’s accuracy. In front of this computer, directly in front of the participant, is a

second computer running the ACM, seen in Figure 5.1b. This computer is connected to

a microphone and a speaker, which is pointed towards the first microphone for the ASR

program. The ACM is connected to a front-facing GUI with a simple ON/OFF button. When

the ACM is off, the audio from the microphone goes straight through the speaker to the ASR

and the projection should display the (mostly) correct speech. When the ACM is on, the

dry audio still goes from the microphone to the speaker, but the masking audio is played

simultaneously over the speaker, and the project should display text quite different from the

intended speech.

The technical aspects of the demonstration worked quite well, with the ACM producing

very unusual transcriptions on the display. The simple interaction of turning the ACM on and
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(a) The physical layout of the system.

(b) The interface for tunring the ACM on/off.

(c) Projection displaying the real-time ASR.

Figure 5.1: Three images from the ACM technical demonstration on April 20th, 2019.

off was crucial in people’s ability to understand the purpose and use of the ACM. In order to

show its effectiveness, it seems essential to show it not working as well; it is not necessarily

self-evident. That being said, it seemed to be clear to everyone participating what the ASR

was meant to accomplish and, in a general sense, how the ACM is supposed to interact with

it. The participants found significant pleasure in the poetics of the altered transcription as it

appeared on the wall. They shared the feelings that the spacing and aesthetic choices for the

projected text contributed to its evocation of poetry, and I think this placement of the ACM

in reference to an artistic context helped it feel enjoyable for those unaware of its technical

underpinnings.
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5.2 Future Realization

In creating a work centered around a piece of technology and a politics around it, there are a

few fundamental options for directions one can take. First, one can make a work that is a

demonstration of the technology in question. A second option is to make a work that is a

presentation of the technology in relation to its politics. Finally, one can create a work that

attempts to ask questions about the technology and its politics rather than just display them.

Set up in this order, it seems like the best, most satisfying artistic choice is clearly

always the third option. However, when approaching a topic that isn’t already in the public

consciousness, it can be challenging to jump right into indirectly questioning it in a nuanced

manner. Mass audio surveillance is not a subject most people think about regularly, and

so trying to question that reality without having that reality first established could create

confusion and be a generally unsatisfactory experience. Much of the surveillance artwork

exists within that first or second category, which is understandable for addressing a subject

that’s new to most viewers. For example, Mont-réel, the 2015 work by Eva Clouard which

displays the artist’s location on a gallery screen in real-time [31], does not do much more

than present a function of surveillance technology. But most viewers would be previously

unaware of the possibilities inherent in GPS tracking, and thus the exhibition might have

been well-served by its clarity and directness.

A good example of surveillance art that envelops all of these categories at once can be

found in the work of Trevor Paglen. An American geographer and artist, Paglen primarily

uses photography and multimedia installation pieces to thoughtfully observe and critique

surveillance practices. His work that perhaps best demonstrates this with a focus on

technology is Autonomy Cube, created in 2014 [77], and seen in Figure 5.2. A beautiful

visual piece, Autonomy Cube is a series of bare computer elements placed in a glass

cube. The computers establish a WiFi network that can be connected to any device in the

vicinity. Autonomy Cube routes all connected traffic through Tor, a decentralized network of

computers around the world meant to hide the source of web traffic [57]. The cube itself also
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Figure 5.2: A picture of Trevor Paglen’s Autonomy Cube, installed in Madrid in 2014.
Source: http://www.paglen.com/?l=work&s=cube&i=2

serves as a Tor node, which means it’s one of the computers through which other Tor users’

traffic might be routed. As an installation, Autonomy Cube serves the dual purpose of an art

object and a practical technology that actively helps others simply by being installed. As a

physical object, it is a curious relic that encourages further exploration and understanding

on the part of the viewer. Interacting with the object automatically sets the participant on a

path towards learning about Tor, privacy, and the place of those things in their personal lives.

Autonomy Cube accomplishes this without needing a conscious desire to investigate privacy

on the part of the viewer; the natural interaction one is led to with the piece does the work

of introducing and problematizing the topic with ease.

The installation design for this thesis has gone through many iterations, primarily

prompted by questions of what purpose it should serve. Initially, it felt necessary to set

the installation up like a technological demonstration of the Acoustic Counterfeit Machine.

I thought that trying to introduce audio surveillance, the ACM, and question the politics

of their situation would be too much for someone to experience, and would come across

muddled. After further reduction, I came to realize that the different elements of the situation
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could be presented in slightly altered function; their use for surveillance could be implied,

but their direct presentation could be simplified to make the installation easier to take

in as a single piece. The politics of the situation could be presented as a possibility for

inference rather than a direct message. Making the installation a clear and cohesive piece

that places the nuance in the subtleties of the interactions was fundamental to the creation of

the installation’s final iteration.

5.2.1 Construction and Manifestation

Figure 5.3: The proposed installation setup. S1 is the screen for the speaker, ACM
is the Acoustic Counterfeit Machine, M is the microphone for the ASR surveillance
system, and S2 is the screen for the actor.

The installation is set up as an interaction between two participants mediated by surveil-

lance and anti-surveillance technology. The format of the interaction is like a game of

charades. The speaker, standing at the S1 station in Figure 5.3, will receive prompts on a

screen in front of them. These prompts will be requests for actions, thoughts, feelings, or

things. Some examples of the on-screen prompts are:

• Acting like ______

• Being ______
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• Feeling like ______

• Seeing ______

• Hearing ______

The prompts are meant to be broad and allow for creative and fun answers. The speaker

receives a prompt and states an answer, then presses a button on screen when they’ve

finished. Their speech is heard by one of the microphones hanging from the ceiling—M

in Figure 5.3—which is attached to a computer running a real-time automated speech

recognition (ASR) system. The calculated text is then sent to the screen placed in front

of the actor, standing at S2 in Figure 5.3. Their screen will have the prompt followed by

the text interpreted by the ASR system, and will read as a set of instructions for them to

carry out. The actor will be wearing noise-cancelling headphones, so their only access to

the speaker’s words is through the on-screen ASR.

On the speaker’s screen is also a button to turn on the Acoustic Counterfeit Machine.

The machine is placed in between the speaker and the ASR microphone—ACM in Figure

5.3—such that the output of the ACM is played into the ASR microphone. When the ACM

is active, the sound interpreted and displayed on the actor’s screen will be the acoustically

modulated speech. When the ACM is off, the actor’s screen should display the correct,

unaltered speech as interpreted through the ASR.

5.2.2 Actors and Relationships

In any artistic framework there are physical and abstract relationships, and they can be

explicitly stated or subtly implied. For example, for a renaissance-era portrait on the wall

of a museum, there is the most obvious relationship of the viewer to the painting. There

is also the relationship of the painting’s subject to their historical context, the frame to the

painting, the painting to the rest of the room, the historical context to the contemporary one,

and countless others. While it’s not always essential to meticulously coordinate all possible
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relationships a work may have, considering relationships can provide a useful framework

for a work’s design, and a lack of consideration can result in a work who’s message is

contradicted by its methods.

There are four separate conceptual systems in my installation: the human speaker, the

human actor, the Acoustic Counterfeit Machine, and the surveillance apparatus. Each of

these systems have specific input and output, and the connections between their respective

experiences of each others’ output give insight into how they might visually and sonically

operate. The four systems all operate in reciprocal relationships, and thus there are 12

primary subject-object relationships in the installation. That being said, I will focus on the

relationships involving the human participants, as those are the most clearly relevant to the

construction and aesthetics of the installation.

The first subject-object relationships are those between the participants and the surveil-

lance apparatus. The microphone of the surveillance apparatus should be perceived by the

speaker to be familiar in function; they should recognize it as a symbol of surveillance, see-

ing the similarity between it and an Amazon Alexa or Google Home, for example. Initially,

I thought of the microphone as needing to feel invasive, intimidating, and condescending to

the speaker. While an element of this should remain, in the context of the larger game-like

interaction, the microphone needs to be clear in function first and foremost. The give-and-

take between these two ideas lead to the bare microphone being hung from the ceiling. As

the installation is in a sizable room, the vertical height of the microphone gives it a slightly

formidable air, while the plainness of its appearance makes it explicitly clear what it is and

how it operates. As Figure 5.3 shows, however, there are numerous microphones hanging

from the ceiling at different heights and placements. Though there are only four in the

figure for visual clarity, the installation should have as many as possible. While only one

is connected to the program running the ASR software, their wires all overlap in such a

way as to make it impossible to tell which microphones are actually listening. The chaotic,

jumbled field of microphones has an oppressive and intimidating nature; the speaker doesn’t
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know what exactly is listening to them, but their impression of the system is that its large,

complex, and always listening.

A challenge apparent in discussing the relationships with the surveillance apparatus

exists in the trade-off between familiarity and comfortability. The most blatant form of mass

audio surveillance most people encounter regularly are "smart speakers". As a primary goal

of the installation is to promote recognition of everyday interaction with audio surveillance,

it would make sense to either directly use one of these devices, or at least visually model the

surveillance apparatus after them. The issue in this strategy is that people don’t generally

have a negative view of their smart speakers. If someone who’d never confronted audio

surveillance was placed in the position of seeing an Amazon Echo performed automated

speech recognition with their voice, it is unlikely that their first reaction would be one of

concern, fear, or even surprise. After all, ASR is what makes these devices work, and even a

layperson would likely understand its integral role in a smart speaker system. While using

or evoking a smart speaker would let participants more easily find a point of relation to the

installation, conveying that the anti-surveillance tool confuses an Echo would likely only

make participants feel that the tool is negative, or makes their convenient smart speakers

more difficult to use. It is for this reason as well that the surveillance apparatus is in its bare

form.

(a) S1 display in front of the speaker. (b) S2 display in front of the actor.

Figure 5.4: Example displays when a prompt has been answered and the ACM is
deactivated.
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The actor’s relationship with the surveillance apparatus is through the on-screen output

of the ASR. Given that the interaction is meant to involve mistranslation of a kind, this

interaction should also primary be one of clarity. The ASR as a surveillance process should

feel clean and easy, both taking little effort and being highly accurate. With this in mind, the

display is neat, with simple black text on a white background. The prompt appears at the

top of the screen, and the ASR text appears below it, updated live as the speaker and/or the

ACM construct their response. An example of what this looks like can be seen in Figure

5.4b.

The next set of relationships are between the participants and the Acoustic Counterfeit

Machine. To the speaker, the ACM should appear supportive and exciting. They should

recognize the ACM’s effect, even when it’s not entirely clear what its exact output is. More

than just recognition, however, they should want to use it and enjoy its results. From the

actor’s perspective, a similar set of interpretations should be implied. The ACM is a software

system that requires the use of a microphone and a speaker, and for a participant to feel that

it is one singular object, it is necessary to have its parts appear as one physical form. The

ACM will be housed in a wooden box with the microphone protruding on one end and the

speaker on the other. The box should be constructed and painted with clean lines and simple

aesthetics. The indication of the ACM’s operation comes through the displays in front of the

two participants. The speaker’s screen has an on/off button for the ACM, as seen in Figure

5.4a, and both screens will change color when the ACM is activated, as well as show a small

message indicating that fact.

The final set of relationships to explore are those between the two participants. As a

game, the installation should encourage the two participants to have fun with the interactions.

The speaker should enjoy giving creative instructions when the ACM is off, and when it’s

on, they should enjoy the disconnect between their words and the actor’s response, likely

trying to guess the mistranslated message. The actor should enjoy receiving direct, coherent

commands as much as they are creative in nature. When the ACM is on, they should have
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fun trying to interpret commands that are likely somewhat confusing and grammatically

incorrect. The addition of the noise cancelling headphones for the actor to wear encourages

the guessing aspect of the interaction, since neither party is aware of the other’s version of

the message.

Outside of the specific physical systems at play, there is an overarching dichotomy that

operates at the conceptual level between the act of exploitation and the act of deception. The

systems in place are only present to serve as a structure within which these acts can occur.

In initial designs, the primary focus was that surveillance is exploitation and a reduction of

agency, and that such a system is not necessary to accept, but can be rebelled and fought

against. While this should hopefully still be a conclusion of one’s encounter with this

installation, central to this final version are concepts of labor and value.

As discussed previously, audio surveillance is a process whereby people’s speech is

transformed into value. This simultaneous creation of value and immediate rejection of

labor at the point of the value’s creation results in a model of extreme exploitation. It’s not

realistic for me to create a system that removes or destroys the surveillance value of speech.

However, by modulating it and re-contextualizing it, the value itself is shifted and altered.

As a synthesis of the theories of machine listening in Chapter 3, the Acoustic Counterfeit

Machine does exactly this. In the installation, when the ACM is off and the surveillance

apparatus is working properly, there is a value in the direct translation of the speaker’s words.

The speaker can say something funny, the actor can act it out, and there is appreciation in

the value of that exact correspondence. When the ACM is on, the words are jumbled, and

the outcome is unexpected and unique. What is enjoyable about this experience is exactly its

mistranslation; the process of making the coherent into something else creates an exciting

and fun surprise, both in reception and interpretation by the participants. Importantly, this

value is not a value that is useful to a machine, a corporation, or the surveillance state. The

value of mistranslation is a uniquely human value, and in its presentation, the exploitation of

speech as labor not only ceases to be productive, but is turned into an act of joyful humanity.
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